Queuing under perimeter control: analysis and control strategy

Mehdi Keyvan-Ekbatani, Rodrigo C. Carlson, Victor L. Knoop
Serge P. Hoogendoorn and Markos Papageorgiou

10 de novembro de 2016
Perimeter control

What is it?
Perimeter control

What is it?
Perimeter control

What is new? What has changed?
NFD-based Perimeter Control

A new opportunity
Perimeter Control

What is wrong with that?
Feedback NFD-based Perimeter Control

Feedback regulator

\[q_g(k) = q_g(k - 1) - K_P [TTS(k) - TTS(k - 1)] + K_I [\hat{TTS} - TTS(k)] \]
Feedback NFD-based Perimeter Control

Flow distribution

\[\sum_{i=1}^{n} q_i = q_g \quad q_{\text{min},i} \leq q_i \leq q_{\text{max},i} \]
Queue management

The queue model

\[N_i(k + 1) = N_i(k) + T[d_i(k) - q_i(k)] \]

or

\[N_i(k + 1) = A_i(k) - B_i(k)q_i(k) \]

with

\[A_i(k) = N_i(k) + Td_i(k) \] and \[B_i(k) = T \]
Queue management

Queue balancing

\[
\min \sum_{i=1}^{n} \left(\frac{A_i(k) - B_i(k)q_i(k)}{N_{\text{max},i}} \right)^2
\]

s.t.:

\[
\sum_{i=1}^{n} q_i = q_g
\]

\[
q_{\text{min},i} \leq q_i \leq q_{\text{max},i}
\]
Simulation results
City center of Chania, Greece
Simulation results

Protected network and gated links

≈ 80 junctions — 27 with traffic lights and 165 links.
Simulation results

Scenarios

NPC - *no-perimeter-control*
Fixed-time traffic control

PC - *perimeter control without queue balancing*
Feedback perimeter traffic flow control with the flow distribution based on links’ saturation flows

PCQ - *perimeter control with queue balancing*
Feedback perimeter traffic flow control with the flow distribution from the solution of the relative queue balancing problem
Simulation results

Simulation and control setup

\[
\hat{TTS} = 600 \text{ veh} \cdot \text{h/h}, \ K_P = 20 \text{ h}^{-1} \text{ and } K_I = 5 \text{ h}^{-1}, \ T = 90 \text{ s}
\]
Simulation results

Network performance

![Box plot showing delay (s/km) for different scenarios: NPC, PC, PCQ. The box plot compares the performance of these scenarios with PCQ performing the best.](image-url)
Simulation results

Analysis of the NFDs
Simulation results

Analysis of relative queues

NPC

PC

PCQ

- PC does not necessarily lead to larger queues than in the NPC case
- Throughput is higher with PC!
Simulation results
Analysis of relative queues (PCQ)

All links
Gated link 3
Gated link 7
Simulation results

Analysis of delays

![Graph showing simulation results with delays in s/km against time in hours. The graph includes multiple lines representing different scenarios or simulations labeled as 1 to 8. The y-axis is labeled 'Delay (s/km)' and the x-axis is labeled 'Time (h)' with values ranging from 0 to 4 hours. There is a legend indicating the lines correspond to different scenarios or simulations. The graph is labeled as 'PCQ'.]
Final remarks

- Higher throughput with PC and PCQ: smaller queues than with NPC
 - Less interference at upstream junctions

- Unbalanced queues caused by localized congestion
 - Avoid localized congestion within the PN by the use of traffic control
 - PCQ + adaptive traffic control!

- Unbalanced delays (fairness)
 - Delay balancing
Acknowledgement
THANK YOU!

rodrigo.carlson@ufsc.br