Mathematical view on traffic flow theory

The use of variational theory to compute capacity

02-12-16
Goals for today

• Show techniques:
 • Count in vehicle number (or pedestrian nr, cycle number)
 • Use dimensional analysis to exclude parameters of your problem (simplification)
 • Moving observers can help for analysis
 • Transformation of capacity-problem to shortest-path problem

• Applied to a problem of road capacity under pedestrian crossings:
 • Capacity can be calculated
 • Capacity depends on frequency x (crossing time)²
Traffic relationships
Traffic relationships

- Often modelled: triangular in flow-density
Moving observers
Moving observers

• How does the relation \(q = k u \) change for a moving observer for the relative flow compared to the moving observer?
• Video

• \(q = k(u-v) \)
Variational theory
Method

• Construct **N-plane** $N(x,t)$, showing how many vehicles have passed location x at time t
• Limitation to N can come from
 • demand (no-one wants to go)
 • Supply (traffic jams)
• Check all possible limitations, and the most strict limitation is the final N-number
Construction of $N(x,t)$

Space

Time

$n=1$ $n=2$ $n=8$

blocking
Construction of $N(x,t)$

- Check all possible limitations, and the most strict limitation is the final N-number.
Construction of $N(x,t)$

- Check all possible limitations, and the most strict limitation is the final N-number.
- Can be converted to a shortest-path problem with moving observers, and overtaking rates as costs.
Construction of $N(x,t)$

- Check all possible limitations, and the most strict limitation is the final N-number.
- Can be converted to a shortest-path problem with moving observers, and overtaking rates as costs.

Theory: for triangular fundamental diagram, all shortest path go forward with free flow speed, follow a bottleneck or go back with wave speed.
Capacity with crossing pedestrians
Problem definition

• Find the capacity of the road under crossing pedestrians

• Assumptions:
 • Homogeneous flow of pedestrians
 • Equal crossing time
 • Triangular fundamental diagram

• Pedestrian flow in peds/meter/second
Problem units: reduce dimensionality

- Units: time, space, and vehicle number
- Without loss of generality, choose units: $q_o = k_j = \tau = 1$
- Pedestrian flow now in units: $\text{peds}/\tau/(v_f \tau)$, with v_f free flow speed
- **Increase of crossing duration**
 same effect as square of increase of pedestrian flow
Trajectories
Blockings

- Find the shortest path between two points at the same line
- Costs are:
 - 0 at a pedestrian
 - 0 moving at free flow
 - R moving at backwards at wave speed
Shortest path

- Find the shortest path between two points at the same point in space
- Costs are:
 - 0 at a pedestrian
 - 0 moving at free flow
 - r moving at backwards at wave speed
After clever shortest path choice

- Analytical boundaries and expression for capacity
Concluding...
Lessons and conclusions

• Count in vehicle number (or pedestrian nr, cycle number)
• Use dimensional analysis to exclude parameters of your problem (simplification)
• Moving observers can help for analysis
• Transformation of capacity-problem to shortest-path problem

• Road capacity under pedestrian crossing can be calculated
• Capacity depends on frequency x (crossing time)2