Mainstream traffic flow control at sags

Bernat Goñi Ros, Victor L. Knoop, Bart van Arem, Serge P. Hoogendoorn

Abstract
We present a new control strategy that aims to reduce total delay at sags. The strategy is based on the concept of mainstream traffic flow control. The traffic density at the bottleneck area is regulated in order to keep it slightly below the critical density, hence preventing traffic from breaking down while maximizing outflow. Density is regulated by means of a variable speed limit section that regulates the inflow to the bottleneck. Speed limits are set based on a proportional feedback control law. We evaluate the effectiveness of the control strategy by means of a case study using microscopic traffic simulation. The results show a significant increase in bottleneck outflow, particularly during periods of high demand, which considerably reduces delay.

Control strategy
Regulate the inflow to the bottleneck \((\rho_{\text{in}} < q, q_{\text{free}}) \), so that the bottleneck does not activate:
- Exit flow \((s) = \text{VSL section outflow} (q_s) > \text{discharge capacity} (c_{\text{lim}}) \)
- VSL section outflow \((q_s) < \text{demand} (d) \)

Control law
Proportional feedback:
\[
\rho_{\text{lim}}(k) = \rho_{\text{lim}} + K_p \cdot \left[\rho - \rho(k-r) \right]
\]
Target speed
Gain
Target density
Delay
\[
\rho_{\text{lim}}(k) = \begin{cases} \rho_{\text{lim},\text{min}}, & \rho_{\text{lim}}(k) > \text{discharge capacity} (c_{\text{lim}}) \\ \rho_{\text{lim}}(k-1) + \Delta \rho_{\text{lim}}, & \rho_{\text{lim}}(k) \leq \Delta \rho_{\text{lim}} \end{cases}
\]
Speed limit constraints
With high demand \((d > c_{\text{lim}}) \), the bottleneck activates:
- Exit flow \((s) = \text{discharge capacity} (c_{\text{lim}}) < \text{demand} (d) \)

With low demand \((d < c_{\text{lim}}) \), the bottleneck does not activate:
- Exit flow \((s) = \text{demand} (d) \)

Results
- The controller reacts adequately to changes in demand
- 7% increase in exit flow \((s) \) in periods of high demand
- 30% reduction in total delay
- Significant reduction also with different car-following model parameter values

Case study setup
- Simulation time: 10000 s
- Network: 30 km, 1 lane, 1 sag

Conclusions
- The proposed control strategy has the potential to reduce total delay at sags
- Further research:
 - Evaluation: multi-lane network, heterogeneous traffic
 - Controller design: mitigation of oscillatory behavior, combination with other control measures