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ABSTRACT
When traffic congestion forms on a road, the flow downstream of the congestion
is generally lower than the pre-queue capacity. This phenomenon is called the ca-
pacity drop. Recent empirical observations show a positive relationship between the
speed in congestion and the queue discharge rate. In literature, this relation is also
observed in the absence of lane changing. These findings help in understanding the
microscopic mechanism behind the capacity drop. Literature indicates that varia-
tions in driver behaviors can account for the capacity drop. However, to the best of
authors’ knowledge, there is no solid understanding of what and how this variation in
driver behaviors lead to the capacity drop, especially without lane changing. Hence,
this paper fills in this gap. We extend the parsimonious car-following model (Laval
et al. 2014) by incorporating the empirically observed desired acceleration stochas-
ticity. The extended parsimonious car-following model shows different capacity drop
magnitudes in different traffic situations, consistent with empirical observations.
Data collected from a car-following experiment is applied to validate the model,
which shows the new model can catch most of the properties of longitudinal behav-
iors. All results indicate that the stochasticity of desired accelerations is a significant
reason for the capacity drop. The new insights can be used to develop and test new
measures in traffic control.
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1. Introduction

It is generally agreed that the capacity drop phenomenon is the salient feature of
freeway bottlenecks: once congestion occurs, the queue discharge rate is 5-20% lower
than the pre-queue capacity (Hall and Agyemang-Duah 1991; Banks 1991; Cassidy
and Bertini 1999; Srivastava and Geroliminis 2013; Chung et al. 2007; Cassidy and
Rudjanakanoknad 2005). Recent empirical findings by Yuan et al. (2015) show yet
another reproducible phenomenon, that the queue discharge rate increases with the
speed in the queue; see Figure 1. In this figure, the capacity drop magnitude is around
26% when the vehicular speed in congestion is zero km/h and decreases as the vehicular
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Figure 1. Relation between the speed in congestion (vj) and the queue discharge rate (qdis) (Yuan et al.

2015). The data are loop detector data collected on three-lane sections on two freeways, A4 and A12, in the
Netherlands. The speed in congestion is the average of detected speed in a spatial-temporal region where

congestion is observed. The flow is calculated using slanted cumulative curves in the downstream of congestion.

Both detected locations are flat and almost straight. More explicit descriptions are referred to Yuan et al. (2015)
and Yuan (2016). Except one data point (shown as a star), all data are collected in sunny days. When fitting

the data, the data collected in the rainy day is excluded. The linear fitting function is qdis = 29 · vj + 5000.

speed increases. The mechanisms behind this “speed-capacity” relationship are not
well understood, to the detriment of traffic operations, simulation models and traffic
delay calculations. This paper aims to fill this void.

Laval and Daganzo (2006) demonstrate that the disruption caused by some lane-
changing maneuvers near merge and moving bottlenecks might explain capacity drop;
see also Yeo (2008); Coifman and Kim (2011); Leclercq et al. (2011, 2015); Yuan
et al. (2017b, 2015). This disruption takes the form of a void in traffic in front of the
lane-changing vehicle, which is caused by the bounded acceleration of the maneuver.

However, recent observations reveal that capacity drop can also take place in the ab-
sence of lane changing (Oh and Yeo 2015). This suggests that voids can form between
any two successive vehicles rather than only in the front of lane changers. After ana-
lyzing time headways in the downstream free-flow state of congestion in the absence of
lane changing, Oh and Yeo (2015) also find that the queue discharge rate decreases as
the congestion severity increases, which is consistent with the speed-capacity relation-
ship from Yuan et al. (2015). It has been argued that the driver-vehicle-combination
(DVC) heterogeneity might explain this phenomenon. Wong and Wong (2002) sug-
gested that the variance of drivers’ desires for free-flow speeds might be a reason
for the capacity drop. They extend the LWR model (Lighthill and Whitham 1955;
Richards 1956) to incorporate a distribution of fundamental diagrams characterized
by their choices of speeds in a traffic stream, and obtain a reverse-lambda fundamental
diagram within simulations. However, a behavioral explanation and empirical data for
this conjecture are still lacking. Chen et al. (2016) study the effect of heavy vehicles
on driver behaviors through empirical analysis and find that heavy vehicles might re-
duce capacity drop by stabilizing surrounding traffic streams, but caution that more
data is needed to confirm their findings. Coifman (2015) show the impacts of the DVC
heterogeneity on the fundamental diagram, but no conclusion on the capacity drop is
drawn.

Two other mechanisms have been proposed for explaining capacity drop (see Yuan
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Figure 2. Relation between the speed in congestion and the capacity drop given by the parsimonious car-
following model. The error bar indicates the standard deviation of the capacity drop. β and σ are two constant

parameters in the model. A higher σ gives a larger capacity drop.

et al. 2017a, for a summary): inter-driver spread (Papageorgiou et al. 2008) and the
intra-driver variation (Tampère 2004; Zhang and Kim 2005; Treiber et al. 2006; Chen
et al. 2014; Yuan et al. 2017a). The inter-driver spread means heterogeneity in the
desired accelerations, e.g. voids can be created between a low-acceleration vehicle and
its high-acceleration predecessor, as noted in Laval and Daganzo (2006). Yuan et al.
(2017a) find that the queue discharge rate reduction due to the acceleration spread is
rather small compared to the bounded acceleration component.

The intra-driver variation mechanism means that the capacity drop is a result of
traffic condition dependent variable driver behavior. For example, Zhang and Kim
(2005) assume the driver gap-time as a function of both gap-distance and traffic phase.
Treiber et al. (2006) investigate an adaption of desired time headway as a function
of local speed variances. However, in these models, a proper understanding of the
capacity drop from a behavioral perspective is missing. The timid-aggressive mod-
els (Laval and Leclercq 2010; Chen et al. 2014, 2012a,b) modify Newell’s first-order
car-following model (Newell 2002) to incorporate both bounded accelerations and dif-
ferent reaction patterns to disturbances to replicate realistic oscillations formation and
propagation. The drawback of this formulation is that several extra parameters are
needed, which might be difficult to estimate in real applications. Laval et al. (2014)
propose a stochastic extension to Newell’s car-following model with bounded acceler-
ations requiring a single extra parameter and exhibiting a predicted ability similar to
the timid/aggressive models.

Based on the above discussions, it seems reasonable that the parsimonious model in
Laval et al. (2014) might explain the speed-capacity relationship in Figure 1. Unfor-
tunately, this is not the case as shown in Figure 2. The inability of the model in Laval
et al. (2014) to reproduce the bottlenecks speed-discharge rate relationship raises the
question whether the stochasticity in driver behaviors is associated with the capacity
drop phenomenon, and if so, in which way. In this paper, we answer this question
by showing an alternative formulation of the model in Laval et al. (2014) based on
additional empirical data analysis. An explicit driver behavioral mechanism behind
the capacity drop phenomenon is developed here, which is expected to shed light on
traffic operations. Towards this end, the outline of the paper is as follows: we present
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(b) Standard deviation of drivers’ desired accelera-

tions at different vehicular speeds v.

Figure 3. Data collections for justifying the function between the vehicular speed and the desired accelera-
tions. (a) Vehicular speed and desired accelerations from 15 experiments in Laval et al. (2014), collected when

the test vehicle is the platoon leader stopped in front of a red signal. A regression line a(v(t)) = −0.014v(t)+0.63

is used to fit the data with R2 = 0.0876 (b) Standard deviation of the desired accelerations in 5-m/s speed
bins. A linear function Std(a(v(t))) = 0.015v(t) + 0.47 is applied to fit the data in Figure 3(b).

the extended car-following model in Section 2. The power of the car-following model
over showing longitudinal drivers’ behaviors is investigated in Section 3, with com-
parisons to earlier empirical findings. Section 3 simulates the capacity drop and its
relation with congestion states using the extended model. Finally, we end this paper
with conclusions and discussions in Section 4.

2. The car-following model

This section formulates the proposed car-following model, which is based on the con-
cept of desired acceleration. The desired acceleration is defined as the acceleration
drivers are willing to impose on their vehicles in the absence of a leader.

Figure 3 shows the desired acceleration at different vehicular speeds. These data
include 15 acceleration processes by the same driver, which are collected only when
the test vehicle is the first one in a platoon stopped in front of the red signal. The data
is the same as analyzed in Laval et al. (2014). Figure 3(b) shows that the standard
deviation of the desired accelerations almost reduces linearly as the vehicular speed
grows. The points in Figure 3(b) are given by calculating the standard deviation of
an aggregation of points in an interval of 3 m/s. This observed dependency between
standard deviation and speed was overlooked in the model proposed in Laval et al.
(2014), and we will see that it might be the reason why this model cannot capture
the speed-capacity relationship. One may argue that using a linear function to fit the
trend shown in Figure 3 may not be accurate. But we would argue that the overall
decreasing trend shown in Figure 3 is consistent with real driving features as observed
in Allen et al. (2000), and is a key ingredient to predict realistic traffic dynamics. In
the future, to what extent the linearity assumption might influence the results should
be investigated.

We now show that this stochastic feature during accelerating is relevant for reducing
queue discharge rates, and can be incorporated into the model by using a geometric
Brownian motion to describe desired accelerations. We firstly introduce a stochastic
desired acceleration model that is consistent with empirical data in Section 2.1, and
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then it is incorporated into Newell’s first-order car-following framework in Section 2.2.
Finally, a single-parameter model is given in Section 2.3

2.1. The desired acceleration model

In this section we formulate the desired acceleration model, which corresponds to the
acceleration processes of a single driver on an empty road, only constrained by the
engine power and the way the driver uses it. Using empirical data, Laval et al. (2014)
show that the following linear vehicle kinematics model is a good approximation for
the mean desired acceleration E[a(v)] when a vehicle is traveling at speed v(t) at time
t, i.e.:

E[a(v(t))] = (vf − v(t))β (1)

where vf is the free-flow speed and β is a positive parameter with units of [time]−1. (1)
is also consistent with linearized relaxation acceleration model in Treiber et al. (2000,
2006). Laval et al. (2014) assume that the desired acceleration is normally distributed
around this mean with constant standard deviation, Std[a(v(t))], independent of the
speed. However, we found that further analysis of the empirical data in that reference
reveals that Std[a(v(t))] decrease with the speed v(t); this is shown in Figure 3(b). It
can be seen that the mean and standard deviation are linear functions of the speed,
both of which vanish near vf . This suggests that the following stochastic differential
equation (SDE) should be a good approximation:

dv(t) = (vf − v(t))βdt+ (vf − v(t))σdW (t) (2)

where W (t) is the standard Brownian motion and σ is diffusion coefficient , which has
units of [time]−1/2. Using S(t) = vf − v(t), we reformulate (2) into:

dS(t) = −S(t)(βdt+ σdW (t)) (3)

with initial conditions S(0) = S0, with S0 = vf − v0 and v0 = v(0). It is noted that
in simulations, the initial state is the state in the last simulation instant rather than
the traffic condition at the beginning of the simulation. That is, as shown in Zhang
et al. (2012) and Wu et al. (2014), similar to the many existing car-following models,
the car-following model in this paper takes the current traffic states into account.

SDE (3) indicates that the stochastic process S(t) follows a Geometric Brownian
motion, and therefore, under Itō’s interpretation of SDEs (Øksendal 2010), obeys a
log-normal distribution with expected value E[S(t)] = S0e

−βt and variance Var[S(t)] =
S2

0e
−2βt(eσ

2t−1). Hence, v(t) follows log-normal distribution with E[·] and Var[·] given
by:

E[v(t)] = vf − (vf − v0)e−βt (4a)

Var[v(t)] = (vf − v0)2(e−(2β−σ2) t − e−2βt) (4b)

Note that log-normality here means that v(t) is always non-negative. To identify the
parameters that drive the model, consider the dimensionless quantities σ̃2 = σ2/β,
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t̃ = βt and ṽ = v/vf , which simplify (4) into:

E[ṽ(t̃)] = 1− (1− ṽ0)e−t̃ (5a)

Var[ṽ(t̃)] = (1− ṽ0)2(e−(2−σ̃2) t̃ − e−2t̃) (5b)

which reveals that apart from the initial data ṽ0 the only parameter in the model is
σ̃2. Notice how the steady-state speed variance tends to zero if σ̃2 ≤ 2 (and to infinity
otherwise), which should always be the case in practice as we will see momentarily.

2.2. Incorporation into car-following framework

Here we incorporate the desired acceleration model (4) into the Newell’s first order
car-following framework(Newell 2002). Newell’s model can be expressed as:

xi+1 = min {xi+1(t− τ) + τvf , xi(t− τ)− δ} (6)

where δ = 1/ρj . xi(t) is the location of vehicle i at time t and τ = 1/(wρj) is the wave
travel time between two successive vehicles. The jam density ρj , shock wave speed −w
and free-flow speed vf are three parameters of a triangular flow-density fundamental
diagram, from which the capacity and critical density associated with the fundamental
diagram can be derived.

Remark here the speed generation via (4) or (5) in this research may result in a
speed higher than the free-flow speed vf . To incorporate the v(t) in to (6), the term
τvf is reformulated into τ ·min(vf , vi+1(t)). That is:

xi+1 (t) = min {xi+1(t− τ) + τ ·min(vf , vi+1(t)), xi(t− τ)− δ} (7)

where the vi+1(t) term in (7) is obtained by generating a log-normal random num-
ber with mean value and variance given by (4). Recall that the log-normal dis-
tribution ensures v(t) is always non-negative. The formulation of (7) may make
an assumption that the acceleration vanishes at free-flow, which might be not
fully realistic. Readers can relax this assumption by formulating (7) as xi+1 (t) =
min {xi+1(t− τ) + τ · vi+1(t), xi(t− τ)− δ} which allows vi+1(t) > vf .

2.3. A single-parameter model

It is important to note that it has been shown that, in the context of the kinematic
wave model, the parameters added by the fundamental diagram (τ, vf and δ in our
case) do not impact flow or delay calculations, when expressed in dimensionless form
(Laval et al. 2014; Daganzo and Knoop 2016; Laval and Chilukuri 2016).

It follows that that capacity drop should be a function of σ̃2 alone, since we have
seen that this is the only additional parameter required by our model. The numerical
experiments in the next section confirm this result.

3. Simulation experiments

This section presents two simulation experiments with the proposed model. The results
are consistent with empirical data, at the aggregate level. In both cases the experiment

6



(a) vlead = 25 km/h (b) vlead = 35 km/h

Figure 4. Samples of vehicular trajectories in car-following experiments. The experiments have been reported

in (Jiang et al. 2014, 2015). Without lane changing, oscillations can be observed. The subfigure at the right

corner of each figure shows the formation and the development of oscillations.

consists of a platoon on a single lane and without lane changes.
The triangular fundamental diagram has parameters w = 18 km/h, vf = 114 km/h,

and free-flow capacity C = 2280 veh/h. Accordingly, ρj ≈ 146.7 veh/km and critical
density ρcri = 20 veh/km.

3.1. Platoon oscillation growth

Empirical data show that the standard deviation of vehicular speeds in a platoon with
a constant-speed leader increases along the platoon in a concave way. This “concav-
ity” in the oscillation growth was first revealed in a 25-vehicle car-following platoon
experiment (Jiang et al. 2014); Figure 4 shows two sample experiments. Tian et al.
(2016) used both Jiang’s and NGSIM trajectory data and found that when the leader
speed is in between 30-55km/h, the oscillation growth is well approximated by a single
concave function. These findings are consistent with Li and Ouyang (2011), who show
that oscillation amplitude exhibits a similar growth pattern. But this reference also
shows that as of vehicle number increases oscillation amplitude standard stabilizes,
something not seen in Jiang’s data.

Our simulation experiment consists of a 250-vehicle platoon on a one-lane road. The
platoon leader drives at a constant speed vlead, which is set to be 30 km/h, 40 km/h
and 50 km/h in different simulations. For each value of vlead, we run 500 simulations,
each for T = 300τ long. For comparison purposes, we use different values of β and σ.
At time t = 0, all vehicles are driving in a congested state with an equilibrium spacing
1/ρ0. ρ0 is the density in the congestion. That is, vi(0) = w(ρj − ρ0)/ρ0, i = 1, 2, ...250.

The sample trajectories in Figure 5 show how several oscillations develop and grow.
Figure 6 shows the relation between the vehicle number and the distribution of speed
standard deviation obtained from the 500 simulation runs. The vlead increases from
Figure 6(a) to Figure 6(c). It can be seen that the standard deviation of vehicular
speed increases in a concave curve along the platoon when the car number is small,
e.g. smaller than 100. As the vehicle number increases, the standard deviation of speed
flattens out around a fixed value, which itself increases with vlead.The good match with
empirical data is apparent.

Figure 7 shows how the standard deviation of oscillatory series x̂(t) = x(t) − x̄(t)
propagate along the platoon. x̄(t) can be seen as the Newell’s trajectory. A growing-

7



(a) vlead = 50 km/h (b) A zoomed-in version of trajectories in the rectan-

gle.

Figure 5. Samples of vehicular trajectories in simulations. The color map indicates the vehicular speed.

vlead = 50 km/h in this sample. An overview of the simulation results are given in (a). The trajectories in the
rectangle in (a) is shown in (b) for a better visualization. In simulations, β = 0.06 and σ = 0.06.
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(a) Concavity with vlead = 30 km/h.
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(b) Concavity with vlead = 40 km/h.
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(c) Concavity with vlead = 50 km/h.

Figure 6. Concavity revealed in car-following platoon simulations when the leading vehicle in the platoon

drives at (a) vlead = 30 km/h, (b) vlead = 40 km/h and (c) vlead = 50 km/h. We used β = 0.06 and σ = 0.055.
The shaded areas illustrate the 95%-percentage (between 97.5th and 2.5th percentile) and 66%-percentage

(between 83th and 17th percentile) of the 500 simulations. The bold curve is the mean value of the simulation

results. The dots in Figure 6 are the speed standard deviation obtained from Jiangs’ car-following experiments.
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(a) Standard deviation of oscilla-

tory series with vlead = 30 km/h.

(b) Standard deviation of oscilla-

tory series with vlead = 40 km/h.

(c) Standard deviation of oscilla-

tory series with vlead = 50 km/h.

Figure 7. Standard deviation of oscillatory series revealed in car-following platoon simulations when the

leading vehicle in the platoon drives at (a) vlead = 30 km/h, (b) vlead = 40 km/h and (c) vlead = 50 km/h. In

simulations, β = 0.06 and σ = 0.055.

and-flattening pattern can be observed, which is consistent with Li and Ouyang (2011).
In addition, we observed that the standard variance of the oscillatory series stabilize
at a fixed value, which is with vlead.

3.2. Speed-capacity relationship

In this section, we study to what extent the proposed model can reproduce the speed-
capacity relationship observed in Yuan et al. (2015); Oh and Yeo (2015). As observed
in Oh and Yeo (2015), the queue discharge rate reduction in absence of lane changing is
a large proportion of the reduced capacity at bottlenecks, outperforming the reduction
due to lane changing.

The simulation setup in this section is identical to the previous sections. But the
leading vehicle which drives at a low constant speed vlead, is removed, allowing vehicles
in the queue to accelerate.

Figure 8 shows two sample runs from our simulations. It can be seen that as vehicle
accelerate voids appear within the platoon, which propagate indefinitely downstream,
causing the capacity drop. To measure this drop, we calculate the queue discharge flow
qdis per:

qdis =
(N − 1) vf∑N
i=2 si(T )

(8)

where si(T ) is vehicle i’s spacing at the simulation ending time T , and N is the number
of vehicles in the platoon. A dimensionless queue discharge rate q̃dis is used in coming
analysis, with unit C. We selected N = 450 since we observed that the discharge rate
stabilizes at that point; see Figure 9(a).

9



(a) vj = 50 km/h (b) vj = 0 km/h.

Figure 8. Sample trajectories from our simulations. The color map indicates the vehicular speed. The speed

at t = 0 is (a) vj = 50 km/h (or density ρ0 = 39 veh/km) and (b) vj = 0 km/h (or density ρ0 = ρj ≈ 146.7

veh/km). N = 50 vehicles, excluding the virtual vehicle, are simulated on a one-lane road segment.
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Figure 9. Simulation results by means of observed queue discharge rates as a function of parameter N and
σ̃2.

Figure 9(b) shows the queue discharge rate is a decreasing linear function of σ̃. A
decreasing function is as expected because the larger the viability of the acceleration
processes, the larger the voids in the traffic stream; linearity is somewhat surprising.

Finally, Figure 10 shows that the proposed model produces a speed-capacity rela-
tionship that is consistent with empirical data. Notice that if σ̃2 = 0.06, the capacity
drop can reach around 22% with a wide moving jam (i.e., vj = 0 km/h), which is
similar to the capacity drop magnitude empirically observed in Yuan et al. (2015) and
Yuan et al. (2017a).

4. Conclusions and discussions

There are two relevant contributions in this work. Firstly, this paper for the first time
proposes a longitudinal behavior-oriented interpretation - desired acceleration errors
- to explain the capacity drop. Though numerous car-following models in literature
have been able to reproduce the queue discharge rate reduction and (possibly) even
the speed-capacity relation, we argue that the approach used in those models lacks
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Figure 10. Relation between the speed in congestion and the capacity drop given by the extended parsimo-
nious car-following model. The error bar indicates the standard variance of the queue discharge rate.

a connection with driver behavior. That is, a profound behavioral mechanism which
can even interpret the mechanisms (as introduced in Section 1) proposed in those
previous car-following models is desirable. Our first contribution is such an attempt.
It is worthwhile to notice that the desired acceleration error mechanism originates
from empirical observations.

Secondly, this paper extended the parsimonious car-following model in Laval et al.
(2014) to reproduce empirical speed-capacity relationships. This was achieved by mod-
eling driver acceleration errors as a Geometric Brownian motion, which is consistent
with our empirical data showing that the standard deviation of the desired acceleration
is a decreasing function of the speed. It is worthwhile to notice that the desired accel-
eration error mechanism seems to be operational nowadays. The possible implications
for traffic management are discussed in this section later.

Notably, the extended model remains a single-parameter model if one is interested
in flow or delay calculations; in particular, the speed-capacity relationship depends
on a single parameter, σ̃2 = σ2/β. Similarly, the queue discharge rate was found
to be a decreasing linear function of σ̃. From the driver behavior perspective, this
parameter encapsulates human error, σ2 and how fast acceleration changes with speed,
β. Therefore, queue discharge rates can be increased by (i) decreasing human error as
much as possible, especially at the beginning of the acceleration process, and/or (ii)
increasing the acceleration at low speeds, by increasing engine power and/or educating
drivers to be more aggressive when accelerating from a full stop.

Based on these findings, firstly we can argue that newer vehicle technologies should
be beneficial for reducing or maybe even eliminating capacity drop. Autonomous ve-
hicles should be able to substantially reduce the variability of acceleration processes,
which is consistent with (i) above; electric vehicles offer much greater accelerating
power than conventional combustion engine vehicles, especially at lower speeds, which
accords well with (ii). Secondly, the roadside traffic management can also gain benefits
from our findings, which again differs from previous car-following models. Let us give
an example. Yuan et al. (2015) show a lane drop on A4 in the Netherlands where
serious congestion have been observed for several days. If we set a speed limit - say 70
km/h - in the downstream of the lane drop, then we believe that the queue discharge
rate can be increased since the β increases which decreases the σ̃. In Figure 11, the
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Figure 11. As the speed limit downstream of a lane drop bottleneck can increase the queue discharge rate.

capitals indicate the traffic state downstream of the lane-drop bottleneck, while the
lower cases indicate the congested state upstream. Without the speed limit, the queue
discharge rate corresponds to state “A” and “a”. When speed limit is conducted, in
Figure 11 the free-flow speed decreases from vOA to vOB (vOA, vOB and vOC is the
slope of line OA, OB and OC, respectively), the queue discharge rate increase from
qa to qb. qa, qb and qc correspond to state “a”, “b” and “c” respectively. Finally, when
the speed limit reduces to vOC when the flow in state C equals qc, we believe that vOC
can be the optimal speed limit.

It is worthwhile to notice that the fundamental diagram used in this study is trian-
gular. One may argue that the triangular fundamental diagram is an approximation
rather than reality. But the shape of the fundamental diagram will not influence the
acceleration model at all. In the acceleration model, the only parameter associated to
the fundamental diagram is the free-flow speed which will be given in a FD with any
shapes.

We used the comprehensive car-following experiment in Jiang et al. (2014) to show
that the model also captures the “concavity” in traffic flow. Further analysis is needed
to investigate if concavity in our model also depends on the fundamental diagram
parameters, and if it is able to produce the periods and amplitudes of oscillations
observed in the data. More data calibrations and validations of the model in freeway
environment are desirable. These topics are currently being investigated by the authors
(e.g., in Xu and Laval (2018)).

The desired acceleration model (see Section 2.1) developed in this paper can be in-
corporated into the OVM (Optimal Velocity Model) or IDM (Intelligent Driver Model)
car-following model in a straightforward way when describing the acceleration on a
free road from a standstill (i.e., we don’t need to use the adaptation time in the IDM
and OVM car-following model. Readers are referred to Treiber and Kesting (2013) for
descriptions on the OVM and IDM car-following model).

The primary interest of this research is in the longitudinal driving behavioral mech-
anism behind the capacity drop. The model developed in this paper contributes to
validating the proposed mechanism. In the future, to what extent this model can re-
produce or/and explain other traffic phenomena should be investigated. Moreover, for
operation more consideration of the uncertainty and stochasticity in traffic flow should
be desirable.
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