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Abstract

Giving pedestrians priority to cross a street enhances pedestrian life, especially if
crosswalks are closely spaced. Explored here is the effect of this management decision
on car traffic. Since it is known from queuing theory that the closer the crosswalk
spacing the lower the effect of pedestrians on cars, scenarios where pedestrians can
cross anywhere are best for both cars and pedestrians. These are the scenarios studied.

Approximate formulas for key features of a street’s (macroscopic) fundamental di-
agram are derived for different levels of pedestrian cross-flows, including tight analytic
upper and lower bounds for the street’s capacity. The formulas reveal that pedes-
trian crossings: (i) reduce capacity by an amount proportional to the square root of
the pedestrian flow; and (ii) increase, both, the free-flow and backward-wave paces by
amounts proportional to the pedestrian flow.

1 Introduction to the problem

In urban environments, traffic flow is affected by the external influence of pedestrians. If
pedestrians are regulated by traffic lights the only disruptions to flow are the traffic light
themselves. This situation is simple and formulas to predict delay already exist; see e.g.
Daganzo (1997). Therefore this paper focuses on the unsignalized case. The subcase in
which cars have priority over pedestrians is not interesting because (i) pedestrians have
no effect on traffic flow and (ii) the ensuing pedestrian delays have already been described
with queuing theory (Tanner, 1951). Therefore the focus is narrowed to the subcase in
which pedestrians have priority at all crossings.

We want to understand the effect of these crossings on the traffic stream. The effect
of a single crosswalk is already well understood. Queuing formulas, in which the cars are
customers served by the crosswalk, exist for both the street capacity and the expected
traffic delay (Hawkes, 1965, 1968, Daganzo, 1977). These formulas predict that splitting
the pedestrian flow of a single crosswalk among several widely separated crosswalks always
increases the street’s capacity and reduces car delay; i.e., that a street design with cross-
walks every 25m is better for cars than one with crosswalks every 100m. We conjecture
that this continues to be true if the crosswalk separation tends to zero; i.e., if we allow
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pedestrians to cross anywhere. Since crossing anywhere is also good for pedestrians, it is
probably the best thing to do if pedestrians are to have priority. This pedestrianization
shall be the scenario considered in this paper.

A street with multiple pedestrian crosswalks can be modeled as a serial queuing system.
However, when the crosswalks are very closely spaced, car queues will spill back over
upstream crosswalks, “blocking” service. Unfortunately, queuing theory does not provide
easy answers to problems with spillbacks – the solution with only two servers is already
very complicated; see Newell, (1979). For this reason, our crossing-anywhere scenario will
not be studied here with the tools of queuing theory, but with a combination of symmetry
arguments, dimensional analysis, simulation and traffic flow theory.

We shall consider an infinitely long homogeneous street with cars and crossing pedes-
trians. It is assumed that cars behave according to the kinematic wave theory of traffic
flow (Lighthill and Witham, 1955, Richards, 1956), and that the fundamental diagram
relating flow q, and density k, is triangular as proposed in Newell (1997). The fundamental
diagram (FD) relationship is denoted q = Q(k). As is well known, kinematic wave theory
is equivalent to two other representations of traffic that will be used in this paper: (i)
the variational theory of traffic flow with a linear cost function (Daganzo, 2005, 2005a,
2006); and (ii) Newell’s simplified car-following model (Newell, 2002). Pedestrian arrivals
are assumed to be homogeneous in space, stationary in time and mutually independent.
Each pedestrian is assumed to interrupt traffic for a fixed amount of time, which is equal
for all pedestrians. We are interested in seeing how these random interruptions modify the
macroscopic fundamental diagram (MFD) of the street, and in particular how much they
reduce the street’s capacity and its free-flow speed.

To answer these questions the paper is organized as follows. Section 2 shows that the
MFD can be expressed as a function of only two parameters and that the capacity can
be expressed as a function of a single one; i.e., that a single curve yields the capacity for
all scenarios. Section 3 examines this curve with simulations and presents an analytical
approximation. Building on these results, Sec. 4 then presents simulated results and
approximate analytic formulae for the MFD. Finally, Sec. 5 presents some conclusions

2 Simplifications

The problem in question is finding the FD of a pedestrianized street along the lines we have
described. To define an instance of the problem one needs to characterize the street and
the pedestrians. Since the street has a triangular FD, three parameters suffice to describe
it. We shall use: (i) the street capacity without pedestrians, qo; (ii) the jam density kj ;
and (iii) the optimum density, ko. Other FD features can be derived from these three
parameters. This paper will use: (a) the free-flow speed, vf = qo/ko; (b) the backward
wave speed, w = q0/(kj − ko); and (c) and the flow-intercept of the congested branch,
r = kjq0/(kj − ko).
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To describe the pedestrians two parameters suffice. We shall use: (iv) their arrival
flux f in pedestrians per unit time per unit length of street; and (v) the time, τ , that each
pedestrian blocks the street. Thus, an instance of the problem is defined by five parameters
in total.

To simplify the formulation we shall work from now on in a system of units for time,
distance and vehicle number (ut, ux, un) such that the values of τ , qo and kj equal 1. The
reader can verify that this is always possible by choosing (ut ≡ τ, un ≡ qoτ, ux ≡ qoτ/kj).
For example, if qo = 1800 v/h, kj = 200 v/km and τ = 5 s then ut = 5 s, un = 2.5 v,
ux = 12.5 m. Thus, from now on and without any loss of generality: τ = qo = kj = 1 so
that these parameters are eliminated.

The remaining two parameters define the problem. The optimum density, ko ∈ [0, 1],
characterizes the street, and the pedestrian flux, f ≥ 0, the pedestrians. The latter can be
interpreted as the expected number of pedestrian arrivals to a section of street of length ux
(comparable with a few car spacings) during a time τ (consisting of a few seconds). In most
real applications arrivals in such a narrow window should be rare so that typically f << 1.
If this is not the case, pedestrian traffic lights are a better option since the disruption they
impose on both cars and pedestrians is largely independent of f .

The foregoing means that the FD solution for all problems can be expressed as a two-
parameter family of curves. This simplification will be exploited in Sec. 4. Interestingly,
it also turns out as is shown in Sec. 2.1 below that ko does not influence the maximum FD
flow, i.e., the street capacity under pedestrian interruptions qo. (Boldface shall be used
from now on for variables representing pedestrianized conditions.) This result is useful
because it establishes that a single curve, qo(f), describes the capacities of all problem
instances. This simplification will be exploited in Sec. 3.

2.1 Invariance of the street capacity with respect to ko

To start, let us define two technical terms: (i) “pedestrian realization”, or “realization”
for short: a randomly drawn set of pedestrian arrival points in the time-space plane,
{..., (ti, xi), ...}; and (ii) “conditional capacity”: the street’s maximum flow possible for a
given pedestrian realization. Note that the street’s capacity qo we seek is the average of
the conditional capacities of an infinite number of random pedestrian realizations.

To show that qo does not depend on ko, we shall show that the value of qo for an
arbitrary ko ∈ [0, 1] is the same as for the case with ko = 1/2. We will do this by showing
that random pedestrian realizations for these two cases can be generated in pairs that have
the same conditional capacities. Hence the average of the conditional capacities for the
two cases is the same.

To generate these realization pairs we shall use a linear change of variable for the time
coordinate, t → t′, whereby new clocks at every location are started at the moment of
passage of a moving observer that travels with a constant pace, u:
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t′ = t− x/u. (1)

As the reader can verify, this change of variable leaves invariant the flow but changes the
speed and density variables as follows:

1/v′ = 1/v − 1/u. (2)

and
k′ = k −Q(k)/u. (3)

The pace of the observer is chosen to be 1/u = ko− 1/2 because then, as shown by (3),
k′o = ko − Q(ko)(ko − 1/2) = ko − (ko − 1/2) = 1/2. In addition, note from (2) that the
free-flow and backward wave speeds with u = ko − 1/2 become equal and of opposite sign,
since 1/v′f = 1/vf − (ko−1/2) = ko−ko +1/2 = 1/2 and 1/(−w′) = 1/(−w)− (ko−1/2) =
(ko − 1)− ko + 1/2 = −1/2. Thus, the transformation converts a street with arbitrary ko
as shown in Fig. 1a, into one with symmetric limiting speeds and k′o = 1/2 as shown in
Fig. 1b. We shall call the problem and the FD as originally formulated “primal”, and the
ones arising from the change of variable “dual”.

The transformation also converts any set of points in the primal time-space plane (t, x)
into a unique image in the dual plane, (t′, x), and viceversa – i.e., the transformation is
a bijection. In particular, the transformation associates with every (primal) draw of a
pedestrian realization a unique dual image, as illustrated by Fig. 1. Furthermore, since
the transformation is linear, it preserves for these dual images the defining properties of
primal pedestrian arrivals; i.e., their homogeneous, stationary and independent nature;
and their arrival flux, f . Thus, the dual images of the random primal realizations can be
interpreted themselves as random realizations of a dual problem of the same type as the
original, albeit with a transformed FD.

The only difference between the primal and the dual problems is that the optimum
density of the dual is k′o = 1/2 instead of ko. Thus, our assertion shall be proven if we
can show that the average of the conditional capacities across all dual realizations (for the
case with ko = 1/2) is equal to the average of the primal conditional capacities (for the
case with ko ∈ [0, 1]). This equality is proven by the proposition below, which actually
establishes something stronger: that the conditional capacities of a primal realization and
its dual image are always equal.

In the proof of the proposition and elsewhere in this paper we shall model the pedestrian
interruptions of a given realization (primal or dual) as fixed bottlenecks with zero capacity,
each pinned at xi and lasting from ti (or t′i) to ti + 1 (or t′i + 1); and we shall use VT to
evaluate the street’s conditional capacity given the bottlenecks. The following definitions
and facts from VT specific to the conditions of our paper will be used – see Daganzo (2005,
2005a) for justifications of the facts:

• Definition 1: A path is “valid” if the slope between any two of its points is in [−w, vf ].
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Figure 1: The primal-dual transformation [symbols in brackets are the measurement units]:
(a) A primal FD; (b) the symmetric dual FD; (c) a primal pedestrian realization with the
observer’s trajectory; (d) dual image of the primal realization and the transformed observer
trajectory

• Definition 2: Slopes equal to vf or −w are called “extremal”.

• Definition 3: A path is “feasible” if it is, both, valid, and goes from the origin to a
point (T, 0) on the time axis. The time T is the path’s “duration”.

• Fact 1: The conditional capacity is the least cost of all feasible paths with T →∞.

• Fact 2: The cost per unit time of a path segment with extremal slope vf is 0.

• Fact 3: The cost per unit time of a path segment with slope 0 (not on a bottleneck)
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is qo = 1.

• Fact 4: The cost per unit time of a path segment with extremal slope −w is the
flow-intercept of the FD’s congested branch, r = 1/(1− ko).

• Fact 5: If a path segment is entirely on a bottleneck its cost rate is 0.

• Fact 6: Without bottlenecks, all valid paths joining two points have the same cost.

Proposition 1. A primal realization and its dual image have the same conditional capacity.

Proof. We need to show that the minimum cost across all feasible paths with T →∞ is the
same for the original and transformed problems. To establish this, it suffices to show that
for every T : (i) our transformation establishes a bijection between the primal and dual sets
of feasible paths; and (ii) the cost of every feasible primal path is the same as that of its
(also feasible) dual image. If this happens, all least cost paths occur in primal/dual pairs
with identical costs, and therefore the primal and dual conditional capacities are the same.

Assertion (i) is true because (a) the transformation maps the origin and point [T, 0]
onto themselves, as can be seen from from Eq.(1); and because (b) images and pre-images
of feasible paths are feasible (as can be seen from (2) which implies {v ∈ [−w, vf ] ⇔ v′ ∈
[−w′, v′f ]}).

To complete the proof, assertion (ii) is now established. To this end, consider a feasible
primal path P and its feasible dual image P ′; and let O and O′ be the total combined
times that each of these paths overlaps with bottlenecks. Now note from (1) that every
segment of the primal time-space plane with constant x (such as any overlap between P
and a bottleneck) is mapped onto a dual segment with constant x of the same duration.
Obviously then, the total overlap durations of P and P ′ should be the same; i.e., O ≡ O′.

To finish proving assertion (ii) and conclude the proof it is now shown that the cost of
any feasible path (primal or dual) is the amount of time it does not overlap with bottlenecks
– this proves the assertion because then the cost of P is [T − O] ≡ [T − O′], which is the
cost of P ′. The cost of a feasible path is first calculated as if there were no bottlelecks.
In this case, as per VT Fact 6 mentioned above, the path’s cost equals the cost of the
zero-slope valid path between the origin and the path’s end-point point [T, 0]. This cost is
T as per Fact 3. So the path’s cost without bottlenecks is T . Now consider the portion of
the path that overlaps with bottlenecks. Bottlenecks reduce the cost of this portion to 0,
as per Fact 5, whereas the cost without bottlenecks was the duration of the overlap, as per
Fact 3. Since the path’s cost without bottlenecks is the total time T , and the introduction
of pedestrian bottlenecks reduces this cost by the amount of overlap, it follows that the
final cost is the amount of time the path does not overlap with bottlenecks, which is the
same for the primal and dual images.

This proposition establishes, not just that the conditional capacity for any realization is
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independent of ko but that this independence also holds for the street’s capacity qo. Thus,
qo is a function of a single variable: qo(f). The next section characterizes this function.

3 Results: the street capacity as a function of pedestrian
flux

The function qo(f) is estimated with a mix of simulations and analysis. The simulation
results are described in Sec. 3.1, and the analysis in Sec 3.2.

3.1 Simulation results

A pedestrianized street was simulated using Newell car-following model because this model
is equivalent to the KWT and allows for the introduction of pedestrians. Recall that in
this model, a car advances in each increment of time ∆t to the most advanced position
that does not exceed: (i) its current one x(t−∆t) plus the maximum distance it can travel
in ∆t, vf∆t; and (ii) the leader’s position xL, evaluated 1/r seconds before t, minus one
jam spacing, 1/kj . Pedestrian interruptions are added by including as a third bound (iii)
the position xP (t) of the closest pedestrian bottleneck at or downstream of x(t) at time t.
The rule with pedestrians is:

x(t) = min{x(t−∆t) + vf∆t;xL(t− 1/r)− 1/kj ;x
P (t)} (4)

For the model to be accurate, ∆t should be small compared with both the duration
of a pedestrian interruption, τ , and 1/r. We set ∆t = 0.1s because in our battery of
experiments, τ = 10s and 1/r > 2s. Figure 2a shows an example set of trajectories for one
of the simulation runs.

The simulation was implemented for a circular street as this allowed us to to use a
fixed number of vehicles and control for density. In all instances the simulation was started
with the vehicles evenly distributed on the street and traveling at the equilibrium speed.
Pedestrians were then activated after a time slightly greater than 1/r to ensure that rule
(4) could be applied – note the right side of (4) involves a time lag of duration 1/r. The flow
in each time window was then evaluated with Edie’s recipe (Edie, 1963) as the ratio of the
total distance traveled by all cars in the time window and the product of the time-window
duration and the street length.

In all cases simulated the system transitioned into equilibrium in well under 3 minutes.
For this reason each simulation run was made to last 20 minutes and its first 10 minutes
were discarded. Figure 2b shows these initial effects for one of the simulated scenarios. It
was also found that the street flow decreases with the street length L, and stabilizes once
the street is several kilometers long; see Fig. 2c, which shows another simulated scenario.
Since in all cases a stable flow was found for L ≥ 15 km we chose L = 15.36 km to simulate
an infinite street.
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Figure 2: Car-following model features [symbols in brackets are measurement units]: (a)
A set of simulated vehicle trajectories for a pedestrian realization; (b) time-series of the
street’s flow showing the initial transient; (c) the effect of street length on flow.

A total of 36 scenarios were constructed by fixing some parameters of the problem
and varying others. These selections resulted in 4 different values of the dimensionless
critical density ko = {0.2; 0.3; 0.5; 0.75} and 9 values of the dimensionless pedestrian flux,
f = {0.001; 0.002; 0.005; 0.01; 0.02; 0.05; 0.1; 0.2; 0.3}. Thus, a total of 36 scenarios were
simulated. For each of these scenarios, the average system flow was evaluated for 40 differ-
ent densities uniformly distributed in the range (0, kj) ≡ (0, 1); and the highest resulting
flow was selected as the estimate of qo.

Figure 3 displays on the qo vs f plane the simulated results. These are expressed by
means of four solid piecewise linear curves. Each of these depicts the 9 simulated results
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Figure 3: Capacity as function of the pedestrian flux. Symbols in brackets are measurement
units.

for one value of ko. Note how, as expected, the lines cluster together since ko has no effect
on capacity. The figure also contains three dashed curves, which are analytical bounds and
an approximation. These are derived below.

3.2 Analytical bounds and an approximation

3.2.1 Upper bound

An upper bound is given by the expected cost of any feasible path. Therefore, an algorithm
that yields reasonably cheap piecewise linear paths and allows the expected cost to be
expressed analytically is used to produce the bound.

The algorithm is recursive. Each step involves one pedestrian, which is used to produce
two consecutive linear segments. The first of these goes to the pedestrian’s arrival point,
and the second overlaps the pedestrian’s bottleneck for its full duration, τ = 1.

The pedestrian is chosen with two objectives in mind: ensuring that the path returns
to the horizontal axis with probability 1 (so it is feasible for T → ∞); and ensuring that
the first linear segment is of short duration (since the the cost of a feasible path is the
proportion of time that it does not overlap with bottlenecks).

Figure 4a illustrates how the pedestrian is chosen. The origin in that figure is at the
endpoint of the previous step. Consider triangle AEG, which is defined by two rays with
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Figure 4: Geometrical regions used to construct the capacity bounds: (a) Upper bound;
(b) lower bound – horizontal segments are hypothetical pedestrian bottlenecks..

extremal slopes emanating from the origin A and truncated at those points E and G where
the ordinates are +z and −z.

Now let z∗ be the ordinate of the smallest triangle containing a single pedestrian arrival
and let this be the chosen pedestrian. Note that such an arrival will be on side EG and
that for a given z∗ all points of this side are equally likely.

This means that the step’s vertical jump is uniformly distributed in [−z∗, z∗], and that
its mean is zero. Thus, the sequence of ordinates forms a null-recurrent random walk that
returns to zero as T → ∞ with probability 1; see e.g., Feller (1968). In other words, our
recursive rule produces feasible paths.

The even distribution of points on side EG also means that the expected duration of
our first linear segment conditional on z∗ is the duration of the horizontal segment from
the origin to the midpoint, B, of EG. Simple geometrical calculations reveal that this
duration, which we denote Y , is:

Y = 1/2 (z∗/vf + z∗/w) = 1/2 (z∗ko + z∗(1− ko)) = z∗/2. (5)

The expected duration E(Y ) ≡ E(z∗/2) is obtained from the distribution of z∗. Given
that the area A(z∗) of the triangle is A(z∗) = Y z∗ = z∗2/2, and that the number of points
in a triangle of area A is Poisson-distributed with mean fA, we have:

Pr{z∗ > z} = exp(−fA(z∗)) = exp(−1/2fz∗2). (6)

It follows that
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E(z∗/2) =
1

2

ˆ ∞
0

exp(−1/2fz∗2)dz = [π/(8f)]1/2. (7)

This is the expected duration of the non-overlap segment in one step of the recursion.
Since the duration of the overlap segment is 1, we have that the expected fraction time
without overlap for each step of the recursion and therefore for the whole path (i.e., our
upper bound qUo ) is:

qUo =
[π/(8f)]1/2

1 + [π/(8f)]1/2
=

1

1 + (8f/π)1/2
. (8)

This is the equation of the upper dashed curve in Fig. 3. For small values of f the above
simplifies to:

qUo = 1−
√

8f/π + o(
√
f), as f → 0. (9)

3.2.2 Lower bound

Recall that the conditional capacity for a given set of bottlenecks is the least cost of a
feasible path, and that such a path is composed of a sequence of (linear) segments that
alternate overlapping and not overlapping with bottlenecks. If we designate by Yi the dura-
tion of the ith non-overlapping segment and by Oi the duration of the following overlapping
segment then the conditional capacity (i.e., the fraction of time without overlap) can be
expressed as:

∑
Yi/(

∑
Oi +

∑
Yi).

Since qo is the average of
∑
Yi/(

∑
Oi +

∑
Yi) across realizations, it is bounded from

below by any quantity that bounds from below every realized instance of
∑
Yi/(

∑
Oi +∑

Yi). One such bounding quantity, denoted qLo , is constructed below by replacing every
Oi in this expression by an upper bound and every Yi by a lower bound.

Since Oi ≤ 1, the upper bound chosen for Oi is 1. And, since Yi is the duration of a
valid non-overlapping segment to another bottleneck, the lower bound chosen for Yi is the
duration Li of a valid segment that reaches another bottleneck in the least time possible .
Thus, our lower bound is: qLo ≡

∑
Li/(

∑
1 +

∑
Li) = L/(L+ 1) = 1/(1 + 1/L).

A formula for L is now derived. Since our pedestrian arrival process is time- and space-
independent, and ergodic, L can be evaluated assuming that the segment’s starting point
is at the origin. Thus, L is the expected duration of a valid segment from the origin that
reaches a bottleneck in the least time possible.

As in Sec. 3.2.1, the expectation is derived starting with an expression similar to (6)
for the complementary cumulative distribution function of Li, Pr{Li > z}. To this end,
consider Fig. 4b and note that the condition Li > z is satisfied if and only if the shaded
region of the figure does not contain any pedestrain arrivals. This is true because as the
figure clearly shows the bottlenecks of pedestrians arriving outside this region can only be
reached in a time greater than z and those of pedestrians arriving inside can be reached in
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time less than z – in the lighter-shaded area the bottleneck can only be reached after the
pedestrian’s arrival. Now, denote by AL(z) the area of the shaded region, and note from
the figure’s geometry that:

AL(z) = goz + goz
2/2, (10)

where
go ≡ 1/[ko(1− ko)] > 0. (11)

Thus, we can write:

Pr{Li > z} = exp(−fAL(z)) = exp(−f [goz + goz
2/2]), (12)

and

L ≡ E(Li) =

ˆ ∞
0

exp(−f [goz + goz
2/2])dz. (13)

Now reorganize the exponent of (13) to read −f [goz+goz
2/2] = −1/2[fgo(z+1)2−fgo]

and introduce the change of variable, fgo(z + 1)2 ≡ y2 to find:

L =
exp(fgo/2)√

fgo

ˆ ∞
√
fgo

exp(−1/2y2)dy =
[
2π
efgo

fgo

]1/2[
1− Φ(

√
fgo)

]
. (14)

The last equality expresses the Gaussian integral using the standard normal cumulative
distribution function, Φ.

Finally, note that our lower bound, qLo = 1/(1 + 1/L), increases with L and that, as
per (14), L decreases with go, which itself depends on ko as per (11). Since the value of ko,
can be chosen at will because the capacity qo is independent of ko, the tightest bound is
obtained by choosing the value of ko that minimizes go and therefore maximizes L, which
maximizes qLo . This happens for ko = 1/2, which yields go = 4. The resulting lower bound
is therefore:

qLo = 1
/(

1 + 1/{L}go=4

)
= 1
/(

1 +
[ 2f

πe4f

]1/2[
1− Φ(2

√
f)
]−1)

. (15)

This is the expression of the lower dashed curve in Fig. 3. For small values of f the above
can be shown to equal:

qLo = 1−
√

8f/π + o(
√
f), as f → 0, (16)

which matches expression (9) for the upper bound.

3.2.3 Approximation

Since (9) and (16) match, both of these expressions are an asymptotically exact approxi-
mation for the street capacity as f → 0. Note from both expressions that the reduction in
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capacity caused by pedestrian flow is proportional to
√
f . This implies that an increase in

pedestrian flow has more of an effect when the pedestrian flow is low than when it is high.
An approximation for arbitrary f , is the average of the capacity bounds (8) and (15):

qo ≈ (qUo + qLo )/2. (17)

A numerical comparison of (8) and (15) for f ∈ [0,∞] reveals that qUo −qLo ≤ 0.22 across all
f . Thus, the potential worst-case error in (17) is 11%. Fortunately, the actual error in the
relevant range that was simulated, f ∈ [0, 0.3], is considerably smaller. Figure 3 shows that
in this range, Eq.(17) very slightly but systematically overpredicts the simulated values –
by about 2% in absolute terms and by about 4% in relative terms. Since this overprediction
is quite steady, it can be reduced by giving the lower bound slightly more weight. We find
that by giving the lower bound 66% of the weight, the differences between the simulation
and the analytical estimates are about 1%.

4 The macroscopic fundamental diagram

This section provides approximations to the MFD, both simulated and analytical.

4.1 Simulation results

Unlike the street capacity, which depends only on f , the the fundamental diagram of the
pedestrianized street, Q(k) depends on both f and ko. For this reason we simulated six
scenarios for three values of f and two values of ko. Although the pedestrian flux, f , can
change by an order of magnitude or more, it is usually small. Thus, most facilities with
non-zero pedestrian flux should exhibit a value that is within a factor of three of one of the
following: f = {0.008, 0.072, 0.29}. For pedestrianized streets low speed limits are likely, so
values of ko in the range [0.25, 0.6] are likely. For this reason, we considered ko = {0.3, 0.5}.

Figures 5a and 5b depict by means of solid lines the 3 MFD’s corresponding to the
mentioned values of f for ko = 0.3 and 0.5, respectively. As a point of comparison, the
figures also include the FD’s for f = 0. Flow estimates for other values of f and ko can
be obtained by interpolation. Alternatively, the approximate analytical results of the next
section, which are shown by solid lines in the figure, can also be used.

4.2 Analytical results

Analytic formulas for the slopes of Q(k) for k = 0 and k = 1 are derived first. These slopes
are the pedestrianized free-flow speed vf , and the backward wave speed −w. The formulas
are then used to construct the MFD approximation.

To estimate vf consider the expected time required by an isolated car to travel a
distance ∆x→ 0. This time is ∆x/vf = ∆xko if the car is not interupted by a pedestrian.
An interruption happens if a pedestrian arrives in the window of space-time preceding
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Figure 5: Estimated MFD’s for two values of ko and three values of f . Symbols in brackets
are the measurement units. Solid lines are simulated results and dotted lines analytical
estimates.

the car by a time duration τ = 1, and the average duration of any such interruption is
τ/2 = 1/2. Since the pedestrian flux is f and the window size is ∆x→ 0, an interruption
occurs with probability f∆x. For ∆x → 0 the probability of multiple interruptions is
O(∆x2). Thus, since ∆x→ 0, the expected delay added by interuptions is f∆x/2. Hence,
interruptions add f/2 units to the vehicle’s pace so that the free-flow pace is:

1/vf = 1/vf + f/2 = ko + f/2. (18)

To estimate −w we consider a model of empty spaces or “holes”. We imagine that at
all times the street is uniformly filled to jam density with a combination of vehicles and
“holes”. For this to happen, when a vehicle advances past an observer, a hole must flow
in the opposite direction, and the sum of the densities of holes and vehicles must be kj .

So, if we use tildes to denote the flow, speed and density variables associated with
holes, we have that: k + k̃ = kj = 1 and q = −q̃. In a steady state, it must be true

that q̃ = −q = −Q(k) = −Q(kj − k̃); i.e., there is a FD relation between k̃ and q̃,

Q̃(k̃) = −Q(kj − k̃). Consideration also shows that if flow of cars is interrupted by a
bottleneck, so is the flow of holes. Thus, holes obey the exact same dynamics as cars; the
only difference is that their FD and MFD are related by our change of variable; i.e.:

Q̃(k̃) = −Q(kj − k̃) and Q̃(k̃) = −Q(kj − k̃). (19)

Consideration of (19) shows that ṽf = −w and ṽf = −w. We have already shown that
1/vf − 1/vf = f/2 for cars. Since holes satisfy the same model as cars, it is also true that
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1/ṽf − 1/ṽf = f/2. And since ṽf = −w and ṽf = −w, it follows that −1/w + 1/w = f/2
so that:

−1/w = −1/w + f/2 = −1 + ko + f/2. (20)

In summary, we see from (18) and (20) that the exitence of pedestrians increases the two
extremal paces by the same amount, f/2. This can be roughly seen in Fig. 5. We are now
ready to construct the approximation.

We start with a trapezoidal upper bound. Since the MFD Q(k) is concave, an upper
bound to it is given by the trapezoid formed by the lines: q = vfk, q = qo and q = w(1−k);
i.e. by the right side of:

q ≤ min{vfk ; qo; w(1− k)}, (21)

where vf and w are given by (18) and (20), and qo can be approximated by (17).
The proposed approximation is a smooth concave curve that is tangent to the trapezoid

(21) at its two extremes, i.e., where k = 0, 1, and at the mid-point of the horizontal segment.
We denote the density at this mid-point k = k̂o since it is the maximum of the estimated
MFD. Consideration of the problem’s geometry shows that:1

k̂o = 1/2 + (ko − 1/2)qo. (22)

Our choice for the MFD approximation is the following continuously differentiable
power function, which has all the above-mentioned properties:

For k ≤ k̂o : q ≈ qo

(
1−

(
1− k

k̂o

)a)
, where a = k̂ovf/qo. (23a)

For k > k̂o : q ≈ qo

(
1−

(k − k̂o

1− k̂o

)b)
, where b = (1− k̂o)w/qo. (23b)

In both (22) and (23) one can use (17) for qo. This is the recipe used for the dashed lines
of Fig. 5.

5 Discussion

The results in this paper pertain to a homogeneous pedestrian flux. We expect this to be
a best case scenario since as was pointed out at the outset of this paper, inhomogeneous

1Note the rays defining the two slanted sides of the trapezium intersect each other below the line q = 1,
and then intersect this line at two equidistant points from the apex of the FD. Thus, the two rays and the
three parallel lines q = 1, q = qo and q = 0 define three similar triangles with parallel horizontal sides
and a common vertex. As such, the triangles share a single median line that passes through their common
vertex and bisects their horizontal sides. The condition that a single straight line passes through the three
midpoints of the triangles’ horizontal sides (i.e., points: (ko, 1), (k̂o, qo) and (1/2, 0)) reduces to (22).
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flux distributions lead to higher delays for isolated cars and less throughput flow. Thus,
research to explore the effects on inhomogeneous distributions is desirable. We anticipate
that this research can benefit from the dimensional simplifications introduced in Sec. 2,
and from VT.
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