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ABSTRACT 1 
Travel time reliability is considered to be one of the key indicators of transport system 2 
performances. The knowledge on the mechanisms of travel time unreliability enables the 3 
derivation of explanatory models with which travel time reliability could be predicted and 4 
utilized in traffic management. Inspired by the Macroscopic Fundamental Diagram 5 
(MFD), describing the relationship between production (average flow completing their 6 
trips) and vehicle accumulation (average density) in a traffic network, this paper 7 
investigates a so-called Macroscopic travel time (un)Reliability Diagram (MRD), relating 8 
the travel time (un)reliability to the network accumulation. The potential of the MFD 9 
relation lies in the fact that it characterizes the state of an entire traffic network with just 10 
two (production, accumulation) or three (adding spatial variability of accumulation) state 11 
variables. Likewise, the MRD describes the network travel time reliability as a function 12 
of just one independent state variable (network accumulation). Empirical analyses are 13 
performed to investigate the variability in MFD as seen in scatters and to show the travel 14 
time (un)reliability in relation to the network accumulations. Traffic data from Dutch 15 
freeway networks are employed to facilitate the analyses. It is found with the MRD on 16 
different freeway networks that a critical travel time (un)reliability accumulation exists, 17 
below which network accumulation has little or even no impacts on travel time 18 
(un)reliability and above which the accumulation has significant impacts on travel time 19 
(un)reliability. It is also found that the critical travel time (un)reliability accumulation is 20 
in general lower than the critical MFD accumulation. These findings provides insights for 21 
the road authorities in how to make tradeoffs between the maximum production and the 22 
travel time reliability in traffic management. 23 

24 

TRB 2013 Annual Meeting Paper revised from original submittal.



Tu, Li, van Lint, Knoop and Sun  2 

 

INTRODUCTION 1 
 2 
Travel time reliability is considered to be one of the key indicators for the performance of 3 
transport systems[1, 2]. The increased attention for travel time reliability in the past decade 4 
has inspired many research efforts in this subject (e.g.[3-12]). Travel time reliability has 5 
significant impacts on travelers’ mode, route and departure time choice decisions, 6 
particularly for trips, such as journey-to-work, of which time constraints (e.g. arrival 7 
time) may impose significant penalties to an individual[3, 7]. Yet, travel time is random in 8 
nature and the unreliability of travel time is hardly predictable. Understanding the causal 9 
relationships between travel time reliability and, for example, demand or supply 10 
characteristics allows one to derive explanatory models with which travel time 11 
(un)reliability can be predicted and become an integral part in traffic planning and design. 12 
Looking at the causes of travel time (un)reliability[8], a rough distinction can be made into 13 
two categories which both can cause a breakdown: demand variation and supply 14 
(capacity) variation. However, a key question is which causes of travel time 15 
(un)reliability can be identified and how can these be used to derive explanatory models 16 
with which travel time reliability can be predicted. A few studies have been conducted to 17 
investigate the factors affecting travel time reliability (e.g.[6, 9, 12]). Tu et al.[12], for 18 
example, investigated the impact of traffic flow on travel time reliability using risk 19 
assessment techniques and found that the critical travel time reliability flow is much 20 
lower than the capacity. The main drawback to use flow is that the flow is a local 21 
measurement of freeway networks, which can not reflect the overall traffic state of the 22 
freeway network and its relation with travel time (un)reliability. Thus, there is a need to 23 
investigate the relationship between travel time (un)reliability and network traffic state, 24 
such that it could be used for network management and traffic controls aiming to 25 
optimizing network travel time reliability.  26 

In the past few years the macroscopic fundamental diagram (MFD) has become an 27 
important tool to evaluate the overall network performance[13], which describes the 28 
network production (average flow out of the network) as a (concave) function of the 29 
network accumulation (the amount of vehicles present in the network). Inspired by the 30 
MFD, this paper proposes a similar approach that describes travel time (un)reliability on 31 
a network as a function of network accumulation. The results, main findings, and 32 
discussions provided here may be valuable for (І) better understanding the macroscopic 33 
diagram between freeway network accumulation and network travel time (un)reliability, 34 
and (Ⅱ) formulating general recommendations for traffic management of freeway 35 
networks. To this end, the next section firstly reviews a number of studies on travel time 36 
reliability measures and on causes of travel time (un)reliability. The third section then 37 
summarizes the research on the MFD and proposes Macroscopic travel time 38 
(un)Reliability Diagram (MRD) to reflect the relationship between travel time 39 
(un)reliability and the overall traffic state of freeway networks. The fourth section 40 
describes the empirical analyses on MRD, which are conducted using the data of Dutch 41 
freeway networks. The final section then concludes with a number of findings and 42 
research implications for future travel time reliability studies. 43 
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TRAVEL TIME RELIABILITY 1 

Travel Time Reliability Measures 2 
In spite of its clear importance as a policy criterion and performance indicator, there is no 3 
consensus yet on how to define and operationalize the notion of travel time reliability[8]. 4 
Indeed many different definitions[14] for travel time reliability exist, and equally many 5 
different quantifiable measures for travel time reliability in a transportation network or 6 
corridor have been proposed (for a recent overview, see[8, 15]). In most cases, travel time 7 
reliability is defined as some function or metric derived from the distribution of travel 8 
time. A large number of studies has thus been carried out on fitting distribution functions 9 
onto observed travel time distributions. Most commonly found are the Gamma 10 
distribution[16, 17], lognormal distribution[17, 18], and Weibull distribution[19]. In Susilawati 11 
et al.[20] a Burr Type XII distribution for travel time variability is proposed on urban 12 
roads. Pu[21] showed that four different typical shapes in travel time distributions 13 
corresponding to the situation of free flow conditions, the onset of congestion, congested 14 
conditions, and the dissolving of congestion (these were identified earlier by Van Lint et 15 
al.[8]) can be adequately captured by the lognormal distribution. There are a large number 16 
of different quantifiable measures for travel time reliability, which could be derived from 17 
either estimated or actually measured travel time distributions. These measures include, 18 
the percentile travel time, standard deviation, coefficient of variation, percent variation, 19 
skewness, buffer index, planning time index, frequency of congestion, failure rate, travel 20 
time index, etc. What these measures have in common is that, in general, they all relate to 21 
properties of the (day-to-day or within-day) travel time distributions, and particularly to 22 
the shape of the distribution. That is, the wider (or longer-tailed) this distribution is, the 23 
more unreliable travel time is considered. One of the key problems is that these measures 24 
are highly inconsistent. In Van Lint et al.[8], for example, this inconsistency is 25 
demonstrated with a selection of 8 commonly used indicators for travel time reliability 26 
applied to a large database of real data. The consequence of this inconsistency is that 27 
policy evaluations may use different reliability metrics rather than commonly accepted 28 
assessment criteria. This may lead to ambiguous evaluations, but also to a fundamental 29 
difficulty in using such (inconsistent) travel time unreliability measures in ex ante studies 30 
as a means to choose between planning and design alternatives.  31 

Recently, Tu et al.[12] proposed a new travel time reliability measure, in which the travel 32 
time reliability of a trip does not just depend on the uncertainty (variability) of travel 33 
times, but also on the instability of travel times (i.e. the instability of the prevailing traffic 34 
conditions). On the basis of a large empirical dataset, they established a novel travel time 35 
reliability model for freeways using risk assessment techniques by synthesizing both 36 
reliability concepts (uncertainty and instability). Traffic breakdown, the indicator of the 37 
instability of travel times, is treated as the risk, whereas travel time variability, the 38 
indicator of the uncertainty of travel times, is considered as the consequence of this risk.  39 
Thereby, the travel time unreliability is the sum of the products of the consequences (i.e. 40 
variability) and the corresponding probabilities of breakdown. The same measure of 41 
travel time reliability will be used in this paper. 42 

 43 
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Causes of Travel Time (Un)Reliability 1 
Recent literature show various opinions on factors that should be considered the main 2 
driving forces behind travel time variability (or unreliability). These studies are either 3 
simulation-based or based on real data. Nicholson and Du[22] show by means of a static 4 
network equilibrium model that travel time variability is proportional to both capacity 5 
and inflow variability. For a given (fixed) link capacity, the variability in link travel time 6 
is due to link flow variation, while for a given (fixed) link flow, the variability in link 7 
travel time is due to variation in the link capacity. They note that travel time variability, 8 
in reality, can arise from both sources, and that it is not always an easy matter to identify 9 
the separate effects of flow and capacity variations. Chen et al.[23] define travel time 10 
reliability in terms of the probability a trip can be made within a particular time and 11 
assume stochastic link capacities, which are uniformly distributed between some upper 12 
and a lower bound value. On a small test network they use Monte Carlo methods and 13 
again (static) network equilibrium methods to analyze amongst other things the 14 
sensitivity of travel time reliability to fluctuations in link capacities. They conclude that 15 
travel time reliability decreases as the demand level increases, which “is no surprise since 16 
traffic congestion grows as a result of higher demand”. Chen et al.[23] also show that the 17 
sensitivity of path travel time reliability to individual link capacity fluctuations differs 18 
largely. Capacity variations on one link may have a huge impact on path travel time 19 
variability, while capacity variations on other links may not affect travel time reliability 20 
more than marginally. In a slightly different fashion, using analytical techniques instead 21 
of Monte Carlo methods, Clark and Watling[4] evaluated a small network under stochastic 22 
demand and degrading link capacities. Also they find that network travel time reliability 23 
decreases as capacity decreases for a given demand level. 24 

Causes of travel time reliability have also been investigated based on empirical data. For 25 
example, Kwon et al.[9] use an empirical, data-driven method to quantify the contribution 26 
of various factors (e.g. traffic incidents, weather, work zones, special events, bottleneck) 27 
on the travel time reliability. They concluded that traffic accidents contributed 15.1% 28 
during AM and 25.5% during PM, among others, and most of the remaining reliability 29 
came from the recurrent bottlenecks. Tu et al.[6] define three traffic regimes by two so-30 
called critical inflows (critical transition inflow and critical capacity inflow, which are 31 
both lower than capacity): fluent traffic, transition traffic and capacity traffic.  On the 32 
basis of a large empirical dataset, we investigate the relationship between flow and travel 33 
time reliability and conclude that travel time variability is hardly related to the variability 34 
of flow in the fluent traffic and capacity traffic (hyper-congested regime), whereas it is 35 
positively correlated with flow variability in transition traffic. However, inflow used in 36 
our earlier work[6]  exclusively denotes vehicles entering the studied freeway section at 37 
the upstream entry of the main carriageway, which does not include the flow of on- of 38 
off-ramps along the roadway section.  Therefore, inflow can not reflect the overall traffic 39 
state of freeway networks. In this context, a traffic state indicator of freeway networks 40 
needs to be introduced, with which its relationship to travel time (un)reliability can be 41 
studied. 42 

 43 
 44 
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MACROSCOPIC FUNDAMENTAL DIAGRAMS 1 
 2 
Our idea on MRD is stimulated by the well-known Macroscopic Fundamental Diagrams 3 
(MFD)[13, 24, 25]. Furthermore, we explore the variability in MFD, which relates to our 4 
travel time (un)reliability. Thus, this section provides an overview on MFD which is the 5 
basis of our MRD. MFD describes structural relationships between production and 6 
accumulation in a traffic network, indicating a deterioration of network performance 7 
when the accumulation of traffic exceeds a certain threshold. The accumulation is the 8 
number of vehicles in the network. Geroliminis and Daganzo[24, 26] have proven that MFD 9 
exist in urban networks, revealing the relation between the average flow and 10 
accumulation in the network, as well as a correlation between the average flow and the 11 
outflow of the network. The outflow is also called trip completion rate, reflecting the rate 12 
at which trips reach their destinations. Whereas a conventional link fundamental diagram 13 
relates local flow to density, the MFD can be understood as an average link fundamental 14 
diagram over an entire network which implies that the relationship represented by the 15 
MFD also incorporates route choice behavior (network dynamics). When only a few 16 
vehicles use the network, the network is in a free flow state, the outflow is low and it is 17 
almost proportional to the amount of vehicles traveling in this network. With the increase 18 
of the number of vehicles, the outflow rises up to a maximum. Like the critical density in 19 
a link fundamental diagram, the value of corresponding critical accumulation when 20 
maximum outflow is reached is also an important parameter. As the number of vehicles 21 
further increases, the production now no longer increases due to the capacity drop and 22 
spillback effects. If vehicles continue to enter the network, this will result in a network 23 
state where vehicles block each other and the outflow actually decreases. Hence, 24 
macroscopic feedback control strategies were introduced with the aim to keep 25 
accumulation at a level at which outflow is maximized for areas with high density of 26 
destination[27]. Geroliminis and Daganzo[24] further showed the existence of MFD using 27 
real data collected from Yokohama, the second biggest city in Japan, under the 28 
assumption that the collected data is homogenous in terms of congestion occurrence.  29 

Jiyang et al.[28] have researched on impact factors that influence the shape of MFD using 30 
a microscopic simulation model. Focusing on the MFD for the freeway area, the causes 31 
for scatters and changes in the MFD have been investigated. Ramp-metering has a direct 32 
impact on the shape of MFD. It is found that the uneven onset and resolving of 33 
congestion is the direct reason for scatters, which is consistent to the one of 34 
Daganzo’s[29]. The rapidly changing traffic demand drastically affects the shape of MFD 35 
because the performance of congested network will be affected. Daganzo and 36 
Geroliminis[29] stressed that the MFD exists in ‘regularity conditions’ (a slow-varying and 37 
distributed demand, a redundant network ensuring that drivers have many route choices 38 
and that most likes are on many desirables routes and a homogeneous network with 39 
similar type of links) and analyzed the connection between the network structure and a 40 
network’s MFD for urban neighborhoods controlled in part by traffic signals. They also 41 
emphasized that networks with an uneven and inconsistent distribution of congestion may 42 
exhibit significant scatter on their MFD because of rapidly changing demands. However, 43 
a comparison between a weekday and a weekend day showed similar results, implying 44 
that the MFD is not sensitive to demand. Geroliminis and Sun[30] show that the spatial 45 
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distribution of density/occupancy in the network is one of the key components that affect 1 
the scatter of an MFD and its shape. This is furthermore discussed and confirmed in 2 
recent work by Saberi and Mahmassani[31], which also discuss the dynamics. A more 3 
elementary work on this topic is presented by Daganzo et al.[32]. 4 

Recent works by Buisson and Ladier[25], Geroliminis and Sun[30], Jiyang et al.[28], and 5 
Cassidy et al.[33] have explored MFD for freeway networks, by using real data[30, 33] and 6 
simulation data[28]. Buisson and Ladier[25], for example, explored the impact of 7 
heterogeneity on the existence of a MFD by relaxing some of the homogeneity 8 
assumptions made by Daganzo, using loop detector data collected in Toulouse, a 9 
medium-size French city. A large scatter was found along the line of MFD, the causes of 10 
which were attributed to: 1) Different types of road (freeway versus urban roads). 2) 11 
Distance between detectors and traffic signals in the urban network. 3) The on-set and 12 
resolving of congestion. Jiyang et al.[28] used the freeway data generated from computer 13 
simulation  and found that hybrid networks give a scattered MFD of freeway networks. 14 
Cassidy et al.[33] analyzed the vehicle trajectories from two freeway stretches of modest 15 
physical lengths and concluded the MFD can be estimated using data from ordinary loop 16 
detectors. In this paper, on the basis of the empirical traffic data, we investigate the 17 
relation between the accumulation of freeway networks and travel time (un)reliability 18 
providing valuable insight into travel time reliability macroscopic diagram. 19 

MACROSCOPIC TRAVEL TIME RELAIBILITY DIAGRAMS 20 
 21 
The aim of this paper is to identify traffic state indicators that can be used to investigate 22 
how the travel time unreliability in freeway networks vary with the overall network 23 
traffic state. Inspired by the MFD, the Macroscopic travel time Reliability Diagrams 24 
(MRD) is proposed and established to demonstrate the relationship between the traffic 25 
state of freeway networks and travel time (un)reliability. A few key variables with MRD 26 
will be defined in this section. 27 

Travel Time Reliability 28 
 29 
In this paper, we use the same travel time reliability measure as proposed by Tu et al.[12]: 30 

 ( )1 br f br c
r rTTUR P TTUC P TTUC= - · + ·  (1) 31 

 32 
in which 33 

br
rP  Probability of traffic breakdown on route r, 34 

fTTUC  Travel time uncertainty before traffic breakdown (i.e. in free flow conditions), 35 
cTTUC  Travel time uncertainty after traffic breakdown (i.e. in congested conditions). 36 

This travel time reliability model provides a new measure accounting for the risks caused 37 
by traffic breakdown (the instability of traffic flow) and the associated travel time 38 
uncertainty. Travel time unreliability depends on the probability that traffic breaks down 39 
and the consequences (travel time uncertainty, TTUC) of such a traffic breakdown. TTUC 40 
is quantified by the difference between the 90th percentile travel time and the 10th 41 
percentile travel time. fTTUC refers to the percentile travel time per unit space in free 42 
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flow conditions and  cTTUC  refers to the percentile travel time per unit space due to 1 
transitions until the congestion dissolves[12]. The instability is quantified by the 2 
probability of traffic breakdown brP . The section traffic breakdown is defined as a 3 
reduction of average speed of a section within one time interval from a high level down 4 
below a threshold of 70 km/h and traffic breakdown of a route occurs in case of at least 5 
one section on the route breaks down (for the detail, please refer to Tu et al.[12]). 6 
 7 

Macroscopic Fundamental Diagram 8 
 9 
The MFD for freeway networks used in this paper is proposed by Daganzo[13], which 10 
relates ‘production’ (the product of average flow and network length) and ‘accumulation’ 11 
(the production of density and network length, network flow). Denote by i and li a road 12 
section between loop detectors and its length; and by qi the flow on each section, by vi the 13 
speed on each section. Then, the macroscopic variables ‘production’ (weighted average 14 
flow) Qw and ‘accumulation’ Ai can be calculated based on data measured by ordinary 15 
loop detectors as follows: 16 

 

i i
w i

i
i

i
i i i

i i i

q l
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∑

∑
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 (2) 17 

If there is inhomogeneous congestion, then scatters are found on the MFD[25, 33]. In this 18 
paper, the network accumulation is classified into groups (1…n) with an accumulation-19 
bin AD . When plotting the MFD, the 10th percentile, 50th percentile and 90th percentile 20 
value in each class, denoted as 10th 50th 90th,  ,  n n nW W WQ Q Q could be presented respectively to show 21 
the variation in the network accumulation as seen in scatters. Each network accumulation 22 
class n corresponds to a weighted average flow 10th 50th 90th, ,n n nW W WQ Q Q , and the associated 23 
weighted average flows in each group, as illustrated in Eq.(3): 24 
 25 

 { }
{ }
{ }

1 2

1 2

1 2

10 10 10 10

50 50 50 50

90 90 90 90

1 3 2n-1
     , ,  ... ,

2 2 2

,   ,   ,  

,   ,   ,  

,   ,   ,  

n

n

n

WW WW
th th th th

WW WW
th th th th

WW WW
th th th th

A A A A

Q Q Q Q

Q Q Q Q

Q Q Q Q

 = D D × D 
 

=

=

=

վ վ վ

⋯

⋯

⋯

 (3) 26 

In this paper, for a given network accumulation A, the 10th percentile, 50th percentile and 27 
90th percentile network production will be presented. 28 
 29 
 30 
 31 
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Macroscopic Travel Time Reliability Diagram 1 
 2 
The network accumulation will be the indicator of the traffic state of freeway networks 3 
and travel time unreliability will be computed by the integration of both travel time 4 
uncertainty and instability. Thus, MRD can be formulated as follows: 5 
 ( )TTUR f A=  (4) 6 

in which 7 
TTUR Travel Time UnReliability 8 
A  Network Accumulation 9 

CASE STUDY ANALYSIS 10 

Case Study and Data Description 11 
 12 
In order to empirically illustrate the macroscopic travel time unreliability diagram on 13 
freeway networks developed in this paper, a network consisting of freeways, provincial 14 
roads and an urban network in the South-west of the Netherlands as shown in Figure 1 is 15 
selected to facilitate the applications. Detailed freeway traffic data (named Monica data) 16 
were collected to estimate the travel time uncertainty and the instability at a given inflow 17 
level on a route. The freeway traffic data are obtained from Regiolab-Delft[34, 35]. The 18 
traffic monitoring system of the study area in Regiolab-Delft gets its traffic data from 19 
dual loop detectors situated every 400-500 meters along the freeway that collect the 20 
traffic data (flow and speed) aggregated for every 1-minute time interval. It is known that 21 
short aggregation intervals (e.g., 1 minute) cause much noise and long aggregation 22 
intervals  (e.g. 1-hour) ignore the phenomenon of the flow stochasticity. In order to 23 
measure reliable flows in this paper, the raw 1-minute aggregate Monica data are 24 
processed into 10-minute aggregate speed and flow observations, for the year 2004. 25 
Before the data are used for analysis, they are pre-processed to tackle the missing data by 26 
using simple imputation interpolation method[15], which employs interpolation in both the 27 
spatial and the time directions, given the route is equipped with detectors { }1,...,˛d D and 28 
a database of measurement U from these detectors in periods { }1,...,˛p P is available. 29 
The location of each detector is denoted by dx . Suppose that no data are available at a 30 
detector d during the time period p, the spatial interpolation procedure we employed to 31 
fill in this gap is according to: 32 

 ( )

( )

( ) ( )

( )
1

,                                          

, 1, ,    1  

, 1                                            
+ -

 + + £

= - + + < < -
 -

a a

space d
a

d n d

U d d p d d D

x
U d p U d p U d d p d D

x x

U d p otherwise

 (5) 33 

in which ( ),+ aU d d p is the first available measurement in the spatial direction (da, the 34 
adjacent loop detector; n, spatial steps between da and d). Similarly, in the time direction 35 
we can repair gap with 36 
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 ( )

( )

( ) ( )
( )

,                                      

1
, , 1 ,     1  

1
, 1                                          

+ + £

= - + + < < +

-

a a

time
a

U d p p p p P

U d p U d p U d p p p P
k

U d p otherwise

 (6) 1 

in which ( ), + aU d p p  is the first available measurement in the time direction (time step 2 
k+1). We will fill in the gap with minimum of both interpolates (implying the maximum 3 
constant of traffic throughput (flows) and travel time (speeds), that is 4 

 ( ) ( ) ( )( )* , min , , ,= space timeU d p U d p U d p  (7) 5 

 6 

Figure 1 Regiolab-Delft traffic monitoring system in The Netherlands 7 

As the Regiolab-Delft server does not directly measure travel time data on the freeway 8 
networks, travel times are estimated with the ‘Piecewise Linear Speed Based’ (PLSB) 9 
trajectory algorithm[36] for every departure time period of 10 minutes. This PLSB method 10 
reconstructs vehicle trajectories and hence mean travel times based on time series of 11 
speed and volume measurements on consecutive detector locations along a route. The 12 
characteristics of the PLSB method is the fact that trajectories are constructed based on 13 
the assumption of vehicle speeds are piecewise linear along a road section between 14 
detectors (and continuous at section boundaries)  rather than piecewise constant (and 15 
discontinuous at section boundaries) speeds. During each departure time period, a record 16 
is stored with the mean travel time per unit length for vehicles departing in this period 17 
and inflow in vehicles per hour per lane during that period. Given sufficiently dense 18 
detector spacing – about 2 dual loop detectors per kilometer – the resulting travel time 19 
estimates compared with the travel times data from floating cars are almost unbiased and 20 
the residual errors exhibit small variance (in the order of 5%)[36]. The travel time used in 21 
this paper is concerned with the route-level dynamic estimated mean travel time on 10-22 
minute aggregate. 23 
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Three routes (freeway corridors) are selected from Regiolab-Delft, as shown in Table 1. 1 
The routes are on average (approximately) 16.7 km long, ranging from 15.5 km to 17.3 2 
km. 3 

Table 1 Description of three freeway corridors 4 

Code Freeway Route length (m) N. of Lanes 

A1201 A12 17,280 2 

A1211 A12 15,520 2 

A2001 A20 17,325 2 

 5 

Results and Findings 6 
 7 
Figure 2 demonstrates the example of the MFDs on freeway networks. The accumulation 8 
and the production (weighted average flow) are calculated by Eq.(2). The two variables 9 
of accumulation and production shown in Figure 2, ,are grouped and averaged over the 10 
whole year (see Eq.(3)). The associated , 10th percentile, 50th percentile, 90th percentile 11 
productions and the variability in productions (i.e. the 90th percentile value of 12 
productions minus the 10th percentile value) for a given accumulation group are 13 
calculated and presented as well. It is shown that the production increases with rising 14 
accumulation in the beginning and the scatter in productions for a given accumulation is 15 
low. At a certain moment, network production starts to decrease and the scatter in 16 
productions is high. The network accumulation reaches the region that the production is 17 
varied, leading to unreliable travel times. At very high level of accumulation, the 18 
variability in productions does not significantly increase as seen with the solid line of 19 
variability in productions, but the unreliability  of travel times continues increasing due to 20 
the fact that the probability of traffic breakdown at such a high level of accumulation 21 
continues increasing as shown in Figure 3. 22 
Figure 3 illustrates the estimated relationships between the corridor travel time 23 
unreliability (travel time unreliability is calculated/estimated using Eq.(1) by Tu et al.[12])  24 
and the network accumulation on the three freeway networks based on the empirical data. 25 
As can be seen in the graph, the travel time unreliability increases with rising 26 
accumulations. Similar trends of travel time unreliability over accumulations are 27 
observed from the analyses on the three corridors. It appears that there is a certain critical 28 
MRD accumulation, above which, the travel time unreliability increases more 29 
dramatically than that below the critical MRD accumulation.  30 
Table 2 lists the critical MFD accumulation (for maximum production) and the critical 31 
MRD accumulation (for travel time reliability). The critical MFD network accumulations 32 
on the basis of the 10th percentile, 50th percentile and 90th percentile MFD are given as 33 
well. As can be seen in Table 2, the lower percentile productions, the lower the critical 34 
accumulations are. It is noticed as well that the critical MRD accumulation are  about 35 
500, 550, 600 for A1201, A1211 and A2001, respectively.  On average, the critical MRD 36 
accumulation is 10% lower than the critical MFD accumulation with the 10th percentile 37 
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production, 25% lower with the 50th percentile production and 29% lower with the 90th 1 
percentile production. Thus, it is found that the critical MRD accumulation is in general 2 
lower than the critical MFD accumulation. 3 
 4 

(a) MFD (A1201) (one line missing) (b) MFD (A1211) 

(c) MFD (A2001) 

 
Figure 2 Macroscopic fundamental diagrams:  

(a) A1201 
(b) A1211 
(c) A2001 

Note: the blue dashed lines indicate the critical 
accumulations with the maximum (percentile) 
productions. 

Table 2 Macroscopic Travel Time Reliability Diagrams Evaluation 5 

Freeway 
code 

Critical network 
accumulation for maximum 

production (vehicles) 

Maximum 
production 

(veh/h) 

Critical network 
accumulation for 
MRD (vehicles) 

10th 50th 90th 10th 50th 90th 

A1201 550 700 700 3080 3680 4210 500 

A1211 650 800 900 3230 3650 4020 550 

A2001 650 700 750 2970 3490 3860 600 

 6 
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(a) MRD (A1201) (b) MRD (A1211) 

(c) MRD (A2001) 

 
Figure 3 Macroscopic travel time Reliability 
Diagrams (MRD):  

(a) A1201 
(b) A1211 
(c) A2001 

  

Discussions 1 
 2 
Travel time reliability has become a crucial indicator of network performances. Based on 3 
our studies on MRD, it is found that travel times becomes already significantly unreliable 4 
at a lower critical network accumulation than the critical MFD accumulation. The 5 
consequence is that there appears to be a tradeoff between travel time reliability and 6 
network flow efficiency (network flow throughput/production). From the latter point of 7 
view, the network flow throughput should be as large as possible. However, the price one 8 
has to pay is that under such conditions, travel times have already become fairly 9 
unreliable, due to the high probability of traffic breakdown. A traffic break down and 10 
subsequent recovery will lead to non-homogeneous situations[31, 37]. This is also visible by 11 
the increase of the bandwidth of the MFD. As soon as the MRD starts to increase, the 12 
variability of the MFD increases. 13 
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MRD is a new tool that is similar to MFD and could be utilized for network performance 1 
evaluations. If these findings turn out to be generally applicable, traffic practitioners and 2 
researchers may use this accumulation-based travel time unreliability model in a number 3 
of ways. For instance, it is a tool to monitor travel time unreliability on freeway networks 4 
on the basis of historical traffic data. In turn, the network traffic management limiting the 5 
inflow of (sub-) networks to ensure that the accumulation remains below the critical MFD 6 
accumulation might result in high probability of traffic  breakdown  and unreliable travel 7 
times in the networks. The goal of the network traffic management should be the tradeoff 8 
between the maximum production and the travel time reliability. MRD with the critical 9 
travel time (un)reliability accumulation could support the practitioners in network 10 
management and traffic controls, ensuring high travel time reliability.  11 
 12 

CONCLUDING REMARKS 13 
 14 
In this paper, we developed the MRD (Macroscopic travel time Reliability Diagram), 15 
which describes the relationship between the traffic state of freeway networks (network 16 
accumulation) and travel time (un)reliability. Firstly, it is found that in general there is a 17 
similar trend of travel time (un)reliability in relation to network accumulations, on the 18 
basis of analyses of MRD on different freeway networks. The travel time unreliability 19 
increases with rising accumulations, which implies that the indicator of network traffic 20 
state, i.e. accumulations, could be an explanatory variable for travel time unreliability. 21 
Secondly, there exists a critical MRD accumulation,  below which network accumulation 22 
has little or even no impacts on travel time reliability and above which the accumulation 23 
has a positive correlation with travel time unreliability. For purposes of guaranteeing 24 
reliable travel times, the inflow should be controlled and restricted to a certain 25 
accumulation level. Thirdly, compared to MFD the critical MRD accumulations are in 26 
general  lower than the critical MFD accumulations in all different percentile MFDs as 27 
presented in the paper. It implies that the tradeoffs between network flow efficiency and 28 
travel time reliability should be taken into account in the decision making on (corridor) 29 
traffic management. These main findings provides intuitive insights into the travel time 30 
(un)reliability in relation to network traffic state, which are meaningful and applicable for 31 
the traffic planning and management studies for road authorities. 32 
 33 
Besides the findings, the developed travel time unreliability model in relation to network 34 
accumulations has potential practical relevances and substantial contributions in the 35 
assessment and optimization of dynamic traffic management measures. It shows that the 36 
accumulation is not only useful in flow optimizations, but also in the reliability 37 
enhancement. 38 
 39 
In future research, it is interesting to investigate whether the MRD could be fitted into a 40 
function, for instance a BPR (a travel time function[38], in which travel time increases 41 
monotonically with flow)-like travel time (un)reliability function or other types of 42 
functions. The fitted  MRD functions then could be used in the ex ante evaluations. 43 
 44 
 45 

TRB 2013 Annual Meeting Paper revised from original submittal.



Tu, Li, van Lint, Knoop and Sun  14 

 

ACKNOWLEDGEMENTS 1 
This project is supported by National Natural Science Foundation of China (NSFC, Grant 2 
No.71271155 and Grant No.71201116) and National High-tech R&D Program of China 3 
(863 Program, Grant No. 2012AA112402). The contents of this paper reflect the views of 4 
the authors who are responsible for the facts and the accuracy of the data presented 5 
herein. The constructive feedback received from the reviewers also helped to strengthen 6 
the final version of this paper. 7 
 8 

REFERENCES 9 

1. Cambridge Systematics Inc., Incorporating Reliability Performance Measures in 10 
the Planning and Programming Processes, in Strategic Highway Research 11 
Program 2, Project L05 Draft Report,Transportation Research Board. 2011. 12 

2. Texas Transportation Institute; Cambridge Systems Inc. Travel Time Reliability: 13 
Making It There On Time, All The Time. . Federal Highway Administration Office 14 
of Operations  2006  [cited December 30, 2009]; Available from: 15 
http://ops.fhwa.dot.gov/publications/tt_reliability/. 16 

3. Abdel-Aty, M., M.R. Kitamura, and P. Jovanis, Investigating effect of travel time 17 
variability on route choice using repeated measurement stated preference data. 18 
Transportation Research Record: Journal of the Transportation Research Board, 19 
1996. 1493: p. 39-45. 20 

4. Clark, S. and D. Watling, Modelling network travel time reliability under 21 
stochastic demand.  Transportation Research Part B: Methodological, 2005. 22 
39(2): p. 119. 23 

5. Brownstone, D. and K.A. Small, Valuing time and reliability: assessing the 24 
evidence from road pricing demonstrations. Transportation Research Part A: 25 
Policy and Practice, 2005. 39(4): p. 279. 26 

6. Tu, H., J.W.C. van Lint, and H.J. van Zuylen, The Impact of Traffic Flow on 27 
Travel Time Variability of Freeway Corridors. Transportation Research Record: 28 
Journal of the Transportation Research Board, 2007. 1993: p. 59-66. 29 

7. Li, H., M.C.J. Bliemer, and P.H.L. Bovy, Modeling Departure Time Choice with 30 
Stochastic Networks Involved in Network Design.  Transportation Research 31 
Record: Journal of the Transportation Research Board, 2009. 2091: p. 61-69. 32 

8. van Lint, J.W.C., H.J. van Zuylen, and H. Tu, Travel time unreliability on 33 
freeways: Why measures based on variance tell only half the story Journal of 34 
Transportation Research Part A: Policy and Practice, 2008. 42: p. 258-277. 35 

9. Kwon, J., T. Barkley, R. Hranac, K. Petty, and N. Compin, Decomposition of 36 
Travel Time Reliability into Various Sources: Incidents, Weather, Work Zones, 37 
Special Events, and Base Capacity. Transportation Research Record: Journal of 38 
the Transportation Research Board, 2011. 2229: p. 28-33. 39 

10. Sweet, M.N. and M. Chen. Does Regional Travel Time Unreliability Influence 40 
Mode Choice? in  2011. p. 19p. 41 

11. Peer, S., C.C. Koopmans, and E.T. Verhoef, Prediction of travel time variability 42 
for cost-benefit analysis. Transportation Research Part A: Policy and Practice, 43 
2012. 46(1): p. 79-90. 44 

TRB 2013 Annual Meeting Paper revised from original submittal.



Tu, Li, van Lint, Knoop and Sun  15 

 

12. Tu, H., H. Li, J.W.C. van Lint, and H.J. van Zuylen, Modeling Travel Time 1 
Reliability of Freeways Using Risk Assessment Techniques. Journal of 2 
Transportation Research Part A: Policy and Practice, 2012. 46(10): p. 1528-1540. 3 

13. Daganzo, C.F., Urban gridlock: Macroscopic modeling and mitigation 4 
approaches. Transportation Research Part B: Methodological, 2007. 41(1): p. pp. 5 
49-62. 6 

14. Lomax, T., D. Schrank, S. Tyrmer, and R. Margiotta, Report of Selecting Travel 7 
Reliability Measures, in  2003, Texas Transportation Institute: Texas, USA. 8 

15. Tu, H., Monitoring Travel Time Reliability on Freeways, in  Transport & 9 
Planning, Falculty of Civil Engineering and Geosciences. 2008, Delft University 10 
of Technology, TRAIL thesis series 2008/7: Delft, The Netherlands. p. 1-172. 11 

16. Polus, A., A Study of Travel Time and Reliability on Arterial Routes.  12 
Transportation, 1979. 8: p. 141-151. 13 

17. Herman, R. and T. Lam, Trip Time Characteristics of Journeys to and from 14 
Work., in  Transportation and Traffic Theory, D.J. Buckley, Editor. 1974: 15 
Sydney. p. 57-85. 16 

18. Richardson, A.J. and M.A.P. Taylor, Travel Time Variability on Commuter 17 
Journeys.  High Speed Ground Transportation Journal, 1978. 6: p. 77-79. 18 

19. Al-Deek, H. and E.B. Emam, New Methodology for Estimating Reliability in 19 
Transportation Networks with Degraded Link Capacities. Journal of Intelligent 20 
Transportation Systems, 2006. 10: p. 117-129. 21 

20. Susilawati, S., M.A.P. Taylor, and S.V.C. Somenahalli, Distributions of Travel 22 
Time Variability on Urban Roads. Journal of Advanced Transportation, 2012. 23 
DOI: 10.1002/atr.192. 24 

21. Pu, W., Analytic Relationships between Travel Time Reliability Measures. 25 
Transportation Research Record: Journal of the Transportation Research Board, 26 
2011. 2254: p. 122-130. 27 

22. Nicholson, A. and Z.-P. Du, Degradable transportation systems: An integrated 28 
equilibrium model.  Transportation Research Part B: Methodological, 1997. 31(3): 29 
p. 209. 30 

23. Chen, A., H. Yang, H.K. Lo, and W.H. Tang, Capacity reliability of a road 31 
network: an assessment methodology and numerical results.  Transportation 32 
Research Part B: Methodological, 2002. 36(3): p. 225-252. 33 

24. Gerolimins, N. and C.F. Daganzo, Existence of urban-scale macroscopic 34 
fundamental diagrams: Some experimental findings. Transportation Research Part 35 
B: Methodological, 2008. 42(9): p. pp. 759-770. 36 

25. Buisson, C. and C. Ladier, Exploring the Impacts of Hemogeneity of Traffic 37 
Measurements on the Existence of Macroscopic Fundamental Disgrams.  38 
Transportation Research Record: Journal of the Transportation Research Board, 39 
2009. 2124: p. 127-136. 40 

26. Gerolimins, N. and C.F. Daganzo. Macroscopic modeling of traffic in cities. in 41 
www.trb.org Compendium of papers TRB 86th Annual Meeting. 2007. 42 
Washington D.C., USA. 43 

27. Knoop, V.L., J.W.C. Van Lint, and S.P. Hoogendoorn, The Macroscopic 44 
Fundamental Diagram Used for Control using Subnetwork Accumulation. 45 

TRB 2013 Annual Meeting Paper revised from original submittal.



Tu, Li, van Lint, Knoop and Sun  16 

 

Transportation Research Record: Journal of the Transportation Research Board 1 
(in press), 2012. 2 

28. Jiyang, B., W. Daamen, S.P. Hoogendoorn, and S. Hoogendoorn-Lanser, 3 
Macroscopic Fundamental Diagram: Investigating its Shape using Simulation 4 
Data. Transportation Research Record: Journal of the Transportation Research 5 
Board, 2010. 2161: p. 40-48. 6 

29. Daganzo, C.F. and N. Gerolimins, An analytical approximation for the 7 
macroscopic fundamental diagram of urban traffic. Transportation Research Part 8 
B: Methodological, 2008. 42: p. pp. 771-781. 9 

30. Gerolimins, N. and J. Sun, Properties of a well-defined macroscopic fundamental 10 
diagram for urban traffic. Transportation Research Part B: Methodological, 2011. 11 
45(3): p. 605-617. 12 

31. Saberi, M. and H.S. Mahmassani, Exploring the Properties of Network-wide 13 
Flow-Density Relations in a Freeway Network. Transportation Research record: 14 
Journal of the Transportation Research Board (in press), 2012. 15 

32. Daganzo, C.F., V.V. Gayah, and E.J. Gonzales, Macroscopic relations of urban 16 
traffic variables: Bifurcations, multivaluedness and instability. Transportation 17 
Research Part B: Methodological, 2011. 45(1): p. 278-288. 18 

33. Cassidy, M.J., K. Jang, and C.F. Daganzo, Macroscopic Fundamental Diagrams 19 
for Freeway Networks: Theory and Observation. Transportation Research Record: 20 
Journal of the Transportation Research Board, 2011. 2260: p. 8-15. 21 

34. van Zuylen, H.J. and T.H.J. Muller. Regiolab Delft. in  In Proceedings of the 9th 22 
World Congress on Intelligent Transport Systems. 2002. Chicago, Illinois, USA. 23 

35. Muller, T.H.J., M. Miska, and H.J. Van Zuylen. Monitoring Traffic under 24 
Congestion. in www.trb.org Compendium of papers TRB 84th Annual Meeting. 25 
2005. Washington D.C., USA. 26 

36. van Lint, J.W.C. and N.J. van der Zijpp, Improving a Travel-Time Estimation 27 
Algorithm Using Dual Loop Detectors. Transportation Research Record: Journal 28 
of the Transportation Research Board, 2003. 1855: p. 41-48. 29 

37. Knoop, V.L., S.P. Hoogendoorn, and J.W.C. Van Lint. The impact of traffic 30 
dynamics on the Macroscopic Fundamental Diagram. in Accepted: www.trb.org 31 
Compendium of papers TRB 92nd Annual Meeting. 2013. Washington D.C., USA. 32 

38. Bureau of Public Roads, Traffic Assignment Manual.  . 1964: U.S.Dept.of 33 
Commerce, Urban Planning Division, Washington D.C. USA. 34 

 35 
 36 

TRB 2013 Annual Meeting Paper revised from original submittal.


